

Contract Number DACA21-96-D-0010 Delivery Order 0002

US Army Corps of Engineers Savannah District

REDSTONE ARSENAL EXTENDED PUMP TEST AT RSA-10

Work Plan

DRAFT DOCUMENT

February 1996

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 14, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

CENCY HEE ONLY # LE			
GENCY USE ONLY (Leave blan	· · · · · · · · · · · · · · · · · · ·	3. REPORT TYPE AND	
L. SITH BAND CHREST	February, 199		
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Redstone Arsenal RS	A-10 Extended Pump Test	Work Plan	U.S. Army Corps of Engineers Contract No. DACA21-96-D-0010
6. AUTHOR(S)			Delivery Order 0002
1		1	
N. Anyanwu, K. Hube	r, N. Okusu		erina in de de grande de la Maria de la Region de la Region La Region de la Reg
7. PERFORMING ORGANIZATION I	NAME(S) AND ADDRESS(ES)		B. PERFORMING ORGANIZATION REPORT NUMBER
ICF Kaiser Engineer	s (ICF KE)	}	TEL OIL HOMBER
7 East Congress Stre			
Savannah, GA 31401	,		
O STONEOGING/MONITORING AC	ENCY NAME(S) AND ADDRESS(ES)	<u>an and the state of the state </u>	
9. SPONSORING/MONITORING AG	ENCT NAME(S) AND ADDRESS(ES)		IO. SPONSORING/MONITORING AGENCY REPORT NUMBER
U.S. Army Corps of 1	Engineers		
Savannah District		<u> </u>	
100 W. Oglethorpe A	venue		
Savannah, GA 31402			
11. SUPPLEMENTARY NOTES			
			gandam genagas maka yang dalamid. Tagad Palamatedik termining sebesah se
12a. DISTRIBUTION/AVAILABILITY	STATEMENT		2b. DISTRIBUTION CODE
_			
See DoDD 5230.24 "Di Documents."	istribution Statements o	on Technical	
Documencs.			
	1		
13. ABSTRACT (Maximum 200 word	/s)		
Results of past inventor Compound List volation immediately south of followed and policies extraction wells.	estigations at RSA-10 in the organic compounds (T E unit RSA-10. This wor es that will be implement The design of the air st OCs in the aqueous strea	CL VOCs) are detectance plan describes properties of the extendance that will that will contact that will be accordanced to the contact of th	ble in groundwater cedures that will be ded pump testing of two l be used to reduce the
· •			
•			
14. SUBJECT TERMS		<u> Agrammatika Salahir katangan merupakan dalam baharan baharan dalam baharan b</u>	Te suimber of page
Redstone Arsenal, RS	A-10, Pump Tests.		15. NUMBER OF PAGES
		ra - Ardeniteira elektrologia elektrologia elektrologia. Na - Ardeniteira elektrologia elektrologia elektrologia.	16. PRICE CODE
		erske i Hausen symmet, van Higher til Karling i Stadt (v. 1945). De far	**************************************
19. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	ON 20. LIMITATION OF ABSTRACT
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	None

TABLE OF CONTENTS

4 0		
1.0	NTRODUCTION	1-1
2.0	SITE BACKGROUND 2.1 SITE GEOLOGY	2-1
	2.2 SITE HYDROGEOLOGY	Z-1
	2.3 ASSESSMENT OF THE EXTRACTION WELLS	2-1
	2.3 ASSESSMENT OF THE EXTRACTION WELLS	2-2
3.0	DESCRIPTION OF GROUNDWATER EXTRACTION AND TREATMENT SYSTEM	3-1
	3.1 ANTICIPATED EXTRACTED GROUNDWATER CONTAMINANT	
	CONCENTRATIONS	3-1
	3.2 OVERVIEW OF TREATMENT SYSTEM DESIGN	₹_1
	3.3 EQUIPMENT COMPOUND AND TRENCHING LOCATION RATIONALE	3-1
	3.4 GROUNDWATER EXTRACTION SYSTEM	3–3
	3.5 GROUNDWATER TREATMENT SYSTEM	. ∠ ≀_⊿
	3.6 SYSTEM CONTROL AND TELEMETRIC MONITORING	/ ¬
	3.7 EQUIPMENT SHED LAYOUT)~C
	3.8 SYSTEM OPERATION AND MAINTENANCE)-U
	3.9 SYSTEM MONITORING AND REPORTING)-/) "
	ROJECT SCHEDULES 4	
5.0	ERMIT REQUIREMENTS 5	5-1
6.0	EFERENCES	j-1

TABLE OF CONTENTS (CONTINUED)

LIST OF TABLES

Table	· !	Page
3-1	ANTICIPATED INITIAL INFLUENT CONTAMINANT CONCENTRATIONS	3-2
3-2	AIR STRIPPER SPECIFICATION DETAILS	3-6

LIST OF APPENDICES

APPENDIX	Α	DRAWINGS

APPENDIX B DESIGN CALCULATIONS

APPENDIX C MAJOR EQUIPMENT SPECIFICATIONS

1.0 INTRODUCTION

ICF Kaiser Engineers, Inc. (ICF KE) has been contracted by the U.S Army Corps of Engineers, Savannah District, to install and operate a groundwater extraction and treatment system as an extended pump test for RSA-10 at Redstone Arsenal, Alabama. This work is being performed under Contract DACA21-96-D-0010, Delivery Order 0002. The purpose of this action is to extract trichloroethylene-contaminated groundwater using extraction wells screened in the fractured bedrock, reduce the concentrations of volatile organic compounds (VOCs) in the aqueous stream using an air stripper, and discharge the effluent into the facility sewer system.

This work is being performed for the U.S. Army Missile Command environmental office at Redstone Arsenal, and under the purview of the U.S. Environmental Protection Agency, Region IV, and the Alabama Department of Environmental Management.

This extended pump test work plan is divided into six sections, as follows:

Section 1 - Introduction.

<u>Section 2 - Site Background.</u> The site history is summarized in this section. Brief descriptions of the site geology and hydrogeology, and an assessment of the extraction wells that will be used in this remedy, are also provided.

<u>Section 3 - Description of Groundwater Extraction and Treatment System.</u> The design rationale and parameters for the groundwater extraction and treatment system are provided. The expected influent and effluent concentrations of volatile organic compounds are presented. Drawings showing the equipment layout, process flow diagram, and the piping and instrumentation diagram are provided in the appendices.

<u>Section 4 - Project Schedule.</u> The schedule is presented in this section and as a Gantt chart in Appendix A.

<u>Section 5 - Permit Requirements.</u> The permits requirements that will be met during construction and operation of the treatment system are listed.

Section 6 - References

2.0 SITE BACKGROUND

RSA-10 is a 68.5-acre landfill located near the geographic center of Redstone Arsenal, Alabama. The landfill is bordered on the north by a wooded area; to the east by a closed landfill (Area Q-3); to the south by the Wheeler National Wildlife Refuge and the floodplains of Huntsville Spring Branch; and to the west by the NASA test area (Figure 1). RSA-10 is composed of a DDT-contaminated soil and sediment landfill (capped but not lined), a waste oil pit area (not capped or lined), closed landfill trenches in which household waste, paper products, waste oil, and construction debris have been disposed (covered with native soil but not lined), and an active sanitary landfill in which household waste, waste oil, hospital infectious waste, construction debris, asbestos, and ash from incinerated paper have been disposed. At present, the active portion of the landfill receives only construction/demolition wastes. The active sanitary landfill is permitted and operated as a solid waste disposal facility under ADEM regulations (Permit No. 45-03R).

Numerous environmental studies have been conducted at RSA-10 since 1977. The results of recent studies by P.E. Lamoreaux and Associates (PELA) in 1988 and Geraghty and Miller (G&M) in 1991 indicate that the groundwater underlying and downgradient of the site is contaminated with volatile organic compounds (VOCs), primarily trichloroethylene (TCE). Semivolatile organic compounds (SVOCs) have also been detected at low concentrations in groundwater samples collected from several monitoring wells at RSA-10.

To further evaluate the extent of groundwater contamination, a total of six extraction wells were installed along the southern edge of the landfill in 1995. These wells were screened within the limestone bedrock aquifer, and groundwater samples were collected from these wells. The results of analysis of these groundwater samples indicate that the groundwater near extraction wells EX-01 and EX-02 is contaminated with approximately 1,000 μ g/L of VOCs (the well locations are shown in Figure 1 in Appendix A). To address the contamination in groundwater in this area and to provide for limited hydraulic control of the bedrock aquifer, the Army has elected to pump these two extraction wells and treat the groundwater.

2.1 SITE GEOLOGY

RSA-10 is underlain by a residuum overburden which is, on average, 90 feet thick. The overburden is composed of fine to medium-grained sands with intermittent clay and silt layers of variable thickness. The deeper residuum layers also contain weathered limestone, limestone gravel, and chert lenses. A rubble zone, composed of limestone gravel, is present directly above bedrock, but is not continuous throughout the site. Underlying the residuum is the Tuscumbia limestone bedrock.

2.2 SITE HYDROGEOLOGY

The site hydrogeology is characterized by a two-layer system that is hydraulically connected. Groundwater flow occurs through the intergranular porosity in the overburden, and preferential flow pathways are likely due to grain-size variations of the insoluble residues produced from the dissolution of the limestone bedrock. In general, groundwater flow in the residuum follows surface water divides. Locally, groundwater in the residuum is likely discharging to the deeper limestone unit.

The limestone bedrock aquifer exhibits secondary porosity in the form of solutionally enlarged fractures, bed partings, and joints (i.e., a karst aquifer). Previous studies at the site (PELA, 1988) have suggested the possibility of artesian conditions in this unit, and this has been confirmed by the work

performed by Foster Wheeler (Foster Wheeler, 1995). Porous flow approximations are not valid for this unit.

Water level measurements collected in the monitoring wells in 1991 have been used to evaluate the groundwater flow directions in the residuum and bedrock aquifers. The potentiometric contours indicate that in the shallow residuum, groundwater flows primarily toward the south and likely discharges to the wetland in the Wheeler National Wildlife Refuge. On the eastern side of RSA-10, groundwater also flows toward the drainage between RSA-10 and Area Q-3, which indicates that a drainage divide is present in this area and groundwater most likely discharges to the drainage ditch. Some percentage of the groundwater in the overburden is discharging to the limestone aquifer.

The limited data available for the groundwater gradients in the bedrock aquifer indicate that groundwater flow is toward the southeast.

2.3 ASSESSMENT OF THE EXTRACTION WELLS

Both EX-01 and EX-02 are constructed of approximately 90 feet of stainless steel 6-inch casing and 60 feet of stainless steel screen. The screened intervals are entirely within the fractured Tuscumbia limestone bedrock aquifer. The boreholes for the wells were drilled using air rotary methods, and limited well development (on the order of 4 hours per well) was performed.

A 20-hour pump test was performed in well EX-01. During the pump test, 70 feet of drawdown resulted from a pumping rate of 16 gpm, and it was concluded that only pseudo steady-state conditions were achieved. Drawdown in EX-01 was 11.2 feet at the end of the test. Therefore, it appears that the fractured intervals in which these two wells are screened are in hydraulic communication.

A specific capacity test was performed for EX-02, which involved the pumping of 1,000 gallons of water at a steady flow rate of 5 gpm. The drawdown at the end of the test was 55 feet.

The large amounts of drawdown observed during the aquifer tests indicate that it is unlikely that the wells will sustain pumping rates of 15 gpm (EX-01) and 5 gpm (EX-02) for extended periods. Therefore, the groundwater extraction and treatment system has been designed to allow flexibility in the flow rate and protection of system components during well recharge intervals.

Of the six extraction wells installed by Foster Wheeler, these two wells were selected for use in this extended pump test due to the relatively high levels of TCE detected in the respective groundwater samples. The expected influent concentrations to the groundwater treatment system are discussed in more detail in the next section.

3.0 DESCRIPTION OF GROUNDWATER EXTRACTION AND TREATMENT SYSTEM

A conceptual design has been completed for a groundwater extraction, treatment, and discharge system to be installed at RSA-10. This section of the extended pump test work plan presents the conceptual design details which will be used to develop the full engineering design and specifications for construction of the extraction-treatment-discharge system to impose hydraulic control and to reduce the dissolved TCE concentrations in groundwater at RSA-10. References will be made throughout the descriptions to the design drawings included in Appendix A. Also relevant to the following discussion are select design calculations included in Appendix B, and the major equipment specifications included in Appendix C.

3.1 ANTICIPATED EXTRACTED GROUNDWATER CONTAMINANT CONCENTRATIONS

Groundwater data obtained from samples collected during pumping tests conducted in March/April 1995 for extraction wells EX-01 and EX-02 were used to anticipate the influent groundwater contaminant concentrations. The estimated concentration of dissolved TCE in groundwater ranged from 940 to 1600 $\mu g/L$; however, a conservative estimate of dissolved-phase TCE concentration of 2,500 $\mu g/L$ is used as a basis for air stripper design. Although TCE is the primary constituent of concern at RSA-10, other organic constituents detected in the groundwater during the March/April 1995 pumping tests are toluene (ranging from 2 to 85 $\mu g/L$) and 1,1-dichloroethene (ranging from 3 to 6 $\mu g/L$). The expected influent contaminant concentrations are listed in Table 3-1 for the major constituents of concern. Also included in this table is the Toxicity Characteristic Regulatory Level for the contaminants. The facility POTW will accept contributions to the sewer system at concentrations below these levels and for a total daily flow of less than 25,000 gallons per source.

3.2 OVERVIEW OF TREATMENT SYSTEM DESIGN

The extended pump test system for RSA-10 is designed to include automatically controlled extraction of TCE-impacted groundwater, treatment of the extracted groundwater using air stripping, and discharge of treated groundwater via an existing sewer manhole to an existing POTW. The pumping scheme is being employed in an effort to provide an interim method of extracting and treating dissolved-phase TCE. The system design includes remote alarm notification in case of system shut-down, automatic controls for system operation, and controls for individual component and full system shut-off.

3.3 EQUIPMENT COMPOUND AND TRENCHING LOCATION RATIONALE

The groundwater remediation system for RSA-10 consists of an extraction and treatment system. The remediation system location plan is shown in Drawing 1 of Appendix A. Two existing extraction wells, located near the southwestern boundary of RSA-10, are to be used to remove the groundwater from the subsurface. The groundwater treatment equipment is to be housed in a temporary equipment shed. Access into the equipment shed is to be provided by one double swing door. The equipment shed is to be situated near an existing RSA-10 area dirt access road. The placement of the equipment shed near the dirt access road is designed to allow easy traffic access to the treatment system. The equipment shed is oriented such that trench piping lengths for both the influent groundwater and the treated effluent are minimized. Extraction wells, EX-01 and EX-02, are to be connected to the equipment shed via below-grade utility trenches containing buried high-density polyethylene (HDPE) process piping, galvanized steel electrical conduits, and control wire conduits. The location of the trench containing buried treated water

TABLE 3-1
ANTICIPATED INITIAL INFLUENT CONTAMINANT CONCENTRATIONS

Constituent	Expected Influent Concentration (µg/L)	Toxicity Characteristic Regulatory Level (μg/L)	
Org	anic Compounds		
1,1-Dichloroethene	6	700	
Toluene	85	NTG	
Trichloroethene	2,500	500	
Inorg	janic Compounds		
Iron	80	NTG	
Manganese	60	NTG	
Zinc	30	NTG	
Total Suspended Solids	< 10 mg/L	< 240 mg/L	
Carbonate Alkalinity (as CaCO ₃)	< 350	NTG	

Toxicity Characteristic Regulatory Level from 40 CFR 261.24, Table 1. NTG= No treatment goal for this constituent.

conveyance piping is selected to circumvent known buried structures¹ within the RSA-10 area and to minimize the length of trenching needed to access the sewer tie-in connections for discharge of the treated water to the POTW.

The existing RSA-10 dirt access road near which the equipment shed is to be situated also provides access to the two existing extraction wells (EX-01 and EX-02). Therefore, the wells can be maintained when necessary.

3.4 GROUNDWATER EXTRACTION SYSTEM

The groundwater extraction system is to consist of two existing groundwater extraction wells EX-01 and EX-02 located near the southeastern boundary of RSA-10 as shown in Drawing 1 of Appendix A. The existing wells (EX-01 and EX-02) are 6 inches in diameter and the well screens and casings are constructed of stainless steel. The approximate depth of each well is 150 feet below ground surface. Well EX-01 is to extract groundwater at an average flow rate of 15 gpm. Well EX-01 is to extract groundwater at an average flow rate of 5 gpm.

Based on system friction losses, a 4-inch diameter, 1-horsepower (hp) submersible pump (P-100) installed in Well EX-01 is to be rated for a capacity of 15 gpm at a minimum of 180 ft total dynamic head (TDH) and constructed of stainless steel. Similarly, a 4-inch diameter, 1/2-horsepower (hp) submersible pump (P-200) installed in Well EX-02 is to be rated for a capacity of 5 gpm at a minimum of 180 ft TDH and constructed of stainless steel. Friction loss calculations are included in Appendix B. The material of construction of the mechanical seals on the submersible pump are to be chemically compatible with the TCE constituents present in the groundwater.

The submersible pump is to contain the starting components integrally with the motor assembly. A water-tight junction box and an on/off disconnect switch installed at the well head is to connect the pump to power from the equipment shed control panel. Hand-off-automatic switches for the submersible pumps which control their operation in response to sensor input from the downhole groundwater level probes is to be housed in the control panel located in the interior of the equipment shed. The probe sensors are to be placed to ensure that the pumps are adequately submerged before commencing pumping operations and that the pump cycling frequency is not excessive.

The submersible pump is to be suspended above the base of the well and supported by a steel safety cable hanging from a support flange/well seal at the top of the well casing. A sufficient length of coiled steel safety cable shall be incorporated to allow the submersible pump to be easily removed from the well for periodic servicing. Flexible pump discharge hose is to be connected from the pump discharge to the top of the well where a quick disconnect switch is to be used to connect the hose to the HDPE groundwater conveyance piping. Each of the HDPE groundwater conveyance pipes are to be connected to the equipment building via utility trenching (as shown in Drawing 1 of Appendix A). The groundwater extraction utility trench is to also contain (2) sealed 3/4-inch diameter galvanized steel electrical conduits and one conduit for the power supply to the submersible pump and the other conduit for the groundwater level sensors. The sealed power supply conduits originate from the well head as follows: (1) at a

¹The conceptualized location of the trench containing treated water conveyance piping was developed without the availability of site utility, structural, and landfill maps and may be subject to change when additional information becomes available.

²The rated break strength of the steel safety cable supplied should be sized appropriately to handle the total hanging weight of the pump system.

connection to a water-tight junction box and electrical disconnect switch; and (2) where the control wiring associated with the level sensing probes are terminated.

3.5 GROUNDWATER TREATMENT SYSTEM

Both of the HDPE groundwater pipes originating from EX-01 and EX-02 are to extend below grade via individual groundwater extraction utility trenches to stub-up in the equipment shed interior. Inside the equipment shed, the individual groundwater extraction pipes are to be fitted with an isolation valve prior to being manifolded to a 2-inch diameter header constructed of Schedule 40 PVC. The above-ground piping located in the equipment shed is to be constructed of Schedule 40 PVC pipe. The 2-inch diameter header is to include a flow quantity totalizer, an instantaneous flow meter, a pressure indicator, and a sample port to allow for system monitoring.

As illustrated in the process flow diagram and the piping and instrumentation drawing (P&ID), Drawings 2 and 3 of Appendix A, the groundwater treatment system is to include a bypass filter³; an air stripper/blower system; a discharge transfer pump; and associated controls. Appendix C includes equipment manufacturer's literature on select equipment components.

The extracted groundwater is to be introduced to a low profile air stripping system for organics treatment where dissolved-phase volatile contaminants in the groundwater are to be transferred to the vapor phase. The mass transfer process is accomplished by operating the low-profile air stripper in a counter-current mode, by which groundwater enters the air stripper from the top and cascades down through the unit, while air is forced using a blower counter-currently from the bottom and ejected from the top. The forced air is supplied to the air stripper by a 3-hp, 230V, single phase, blower capable of approximately 300 cubic feet per minute (cfm) against a discharge pressure of 14 inches of water. Effluent air from the low-profile stripper containing VOCs will be vented directly to the atmosphere from a discharge stack.⁴

Table 3-2 provides additional details on the air stripper specification. Based on the expected influent TCE concentration in groundwater of 2,500 μ g/L, the proposed low profile air stripper is designed to achieve a 99.91 percent removal efficiency. TCE concentrations in the treated water effluent is to be reduced to 3 μ g/L. The vapor-phase TCE mass flow rate in the air stripper off-gas is expected to be 0.0374 pounds per hour. Assuming a temperature of 60°F and an air flow rate of 300 cfm, the concentration of TCE in the stack discharge is calculated to be 0.37 parts per million volume (ppmv). The velocity of the stack discharge is 1,530 cfm based on an air discharge duct diameter of 6-inches and an air flow rate of 300 cfm. Drawing 2 of Appendix A also presents process flow data on the various constituents detected in the groundwater.

Level sensors within the air stripper unit are to monitor the level of water being treated by the stripper, and control the action of the extraction pumps. Treated groundwater exiting the air stripper is to be pumped using the discharge transfer pump in response to a liquid level switch which monitors the

³ Based upon available data, it does not appear that pre-filtration of the extracted groundwater will be required. However, extracted groundwater entering the treatment system may be optionally routed through a filter to eliminate excess suspended solids, if necessary, when purge water from the remedial investigation tank is pumped into the treatment system. The filtration system may also be incorporated if suspended solids prove to adversely affect the system by reducing treatment efficiencies and increasing downstream operation and maintenance costs.

⁴As shown in Table 3-2, the air discharge duct is 6 inches in diameter and is set at a height of 10 feet.

liquid level in the sump tank integral to the air stripper. The effluent is to be pumped to the sewer via a utility trench containing HDPE conveyance piping in compliance with POTW requirements.

3.6 SYSTEM CONTROL AND TELEMETRIC MONITORING

An indoor process control and electrical NEMA 4X (splash-proof) panel is to house the motor starting components, motor protectors, circuit breakers/power distribution system, programmable logic controller, modems, control logic interconnections, visual alarms to indicate system malfunction, and telemetry system. Control panel ratings are to meet the requirements of local fire codes.

As shown in the P&ID (Drawing 3 of Appendix A), the groundwater extraction and treatment system controls are to include: a flow quantity sensor and indicator, an instantaneous flow indicator, and a pressure indicator on the inlet manifolded piping; a high-level switch and alarm and a temperature indicator in the air stripper; a high-pressure switch and alarm and a low-flow switch and alarm at the air stripper blower; a flow quantity sensor and indicator, an instantaneous flow indicator, and a pressure indicator on the effluent discharge piping. Drawing 4 presents the associated legend for the P&ID.

Treated water leaving the air stripper is to be pumped to the sewer manhole using the discharge transfer pump. Should the volume of accumulated water in the air stripper sump tank reach a critical level before it is pumped to the sewer, a high-high-level switch in this tank is to be actuated which will terminate operation of the extraction well submersible pumps, and locally and remotely report an alarm condition to the RSA-10 office. Therefore, if process flow is impeded by a failed transfer pump or control system to prevent overflow of untreated groundwater. A high-low-level switch in the air stripper sump tank is to both enable or disable the discharge transfer pump operation. Similarly, when the low-flow switch is actuated downstream of the air stripper blower, both of the extraction well submersible pumps operations are to be discontinued to ensure adequate groundwater treatment efficiency. A high-pressure switch downstream of the air stripper blower is to be used as an early warning of plugging/fouling of the air stripper.

Flow quantity sensors and indicators and an instantaneous flow indicators are to be located in the inlet piping, in the effluent discharge piping to the sewer to measure totalized and instantaneous flows to allow local monitoring of the volume of water extracted, treated, and discharged.

A telephone line/telephone service is to be provided to the equipment building to allow for autodialling for remote notification of system shut-down or alarm. The telemetry unit is to be programmed to notify the operator of the alarm conditions described above.

Additional control panel features are to include elapsed time meters for all electrically operated components (solenoids and motors) and lightning protection for all inputs and outputs from the control panels (telephone lines, control lines, and power supply lines). The elapsed time meters are to track cumulative time of operation of the monitored components to evaluate component performance (duty life) and to schedule planned maintenance. The lightning protection is to minimize damage to system components that may result from power surges.

3.7 EQUIPMENT SHED LAYOUT

The layout of the equipment shed is to provide weather protection and adequate access to the process equipment for maintenance and monitoring. The 10' wide x 15' long equipment shed is to be equipped with sound dampening materials to reduce equipment operating noise and for weather protection and one double swing door. The equipment shed is to house the filter, the low-profile air

TABLE 3-2 AIR STRIPPER SPECIFICATION DETAILS

Description	Low profile shallow tray air stripper Model 2331-P constructed of linear low density polyethylene. Three tray unit.		
Blower Description	Forced air draft blower, 3 HP, 1/60/230 VAC, 300 cfm at 14 IWC		
Air Stripper Dimensions	6'0" H x 8'0" L x 4'5" W		
Air Stripper TCE Efficiency	99.91 %		
Height of Air Discharge Duct	10'0"		
Air Discharge Duct Diameter	6-inches		
Temperature of Air Leaving Discharge Duct	60°F		
Velocity of Air Leaving Stack	1,530 feet per minute (ft/m)		
TCE Stack Discharge in Air Duct	0.0374 pounds per day		
Concentration of TCE in Stack Gas	6.2 parts per million volume (ppmv) at 300 cfm		
Concentration of TCE in Water Effluent	3 μg/L		

stripper and blower, the air stripper transfer pump, the discharge tank, the discharge transfer pump, instrumentation and controls. The equipment shed is to be anchored to a concrete pad constructed near the existing dirt access road for structural support for the duration of the remedial activities. The equipment shed is to include a heating and lighting systems. Exposed above-ground piping, if needed, is to be electrically traced for freeze protection.

3.8 SYSTEM OPERATION AND MAINTENANCE

Operation and maintenance (O&M) of the installed system will include scheduled visits to complete routine preventive maintenance and monitoring tasks. There is a possibility that unscheduled visits to conduct repairs and system adjustments may be required. Scheduled preventative maintenance and inspections will be performed to help ensure efficient, long-term operation of system components. After installation, ICF Kaiser personnel will spend a total of 50 scheduled days annually on the site to perform O&M and environmental sampling (discussed in Section 3.9). During the routine site visits, the remediation equipment will be visually inspected, pressure and flow measurements will be taken and recorded, and manifold valving may be adjusted, as appropriate.

Disposal of bag filters, if required, will be coordinated, scheduled and completed in order to coincide with routine site visits where reasonably possible. System electrical operating parameters, and system integrity inspections will be conducted quarterly and are to coincide with other site visits or inspections. Routine equipment maintenance including the cleaning of the air stripper, changing of lubricating oil and cleaning/replacement of filters are to be completed during regularly scheduled site visits and are in general accordance with equipment manufacturer's recommendations.

3.9 SYSTEM MONITORING AND REPORTING

Monitoring of the installed system will include scheduled visits in conjunction with O&M activities to complete environmental sampling tasks. Twice per month, an effluent water sample will be collected and analyzed for VOCs using SW-846 Method 8240. These effluent data, together with the totalized flow reading for the two-week period, will be provided to the environmental office at Redstone Arsenal.

4.0 PROJECT SCHEDULES

The planned schedule of activities leading to remediation system operation and maintenance are shown in Figure 5 (Appendix A). Equipment procurement and assembly will occur over an estimated 8-week period. On-site construction work, including the installation of subsurface trenching/piping and utility connections, will begin prior to shipment of the assembled remediation equipment to the site and will terminate before the equipment has arrived at the site. Start-up and trouble-shooting activities are to be completed within two weeks.

5.0 PERMIT REQUIREMENTS

Using the air emissions data provided in Table 3-2 of this work plan, the environmental office of Redstone Arsenal will obtain any necessary air permits.

The necessary excavation permits will be obtained from the facility prior to trenching operations. Clearance of buried utilities will be performed by facility personnel.

Treated effluent will be discharged into the sanitary sewer system; eventual treatment and discharge will occur under the facility's existing NPDES permit. Treated effluent from the extended pump test will be non-hazardous (i.e., the concentrations of contaminants will be less than their respective Toxicity Characteristic Regulatory Level established in 40 CFR 261.24.) The flow rate will be controlled such that the daily flow into the sewer system from the air stripper will not exceed 25,000 gallons.

6.0 REFERENCES

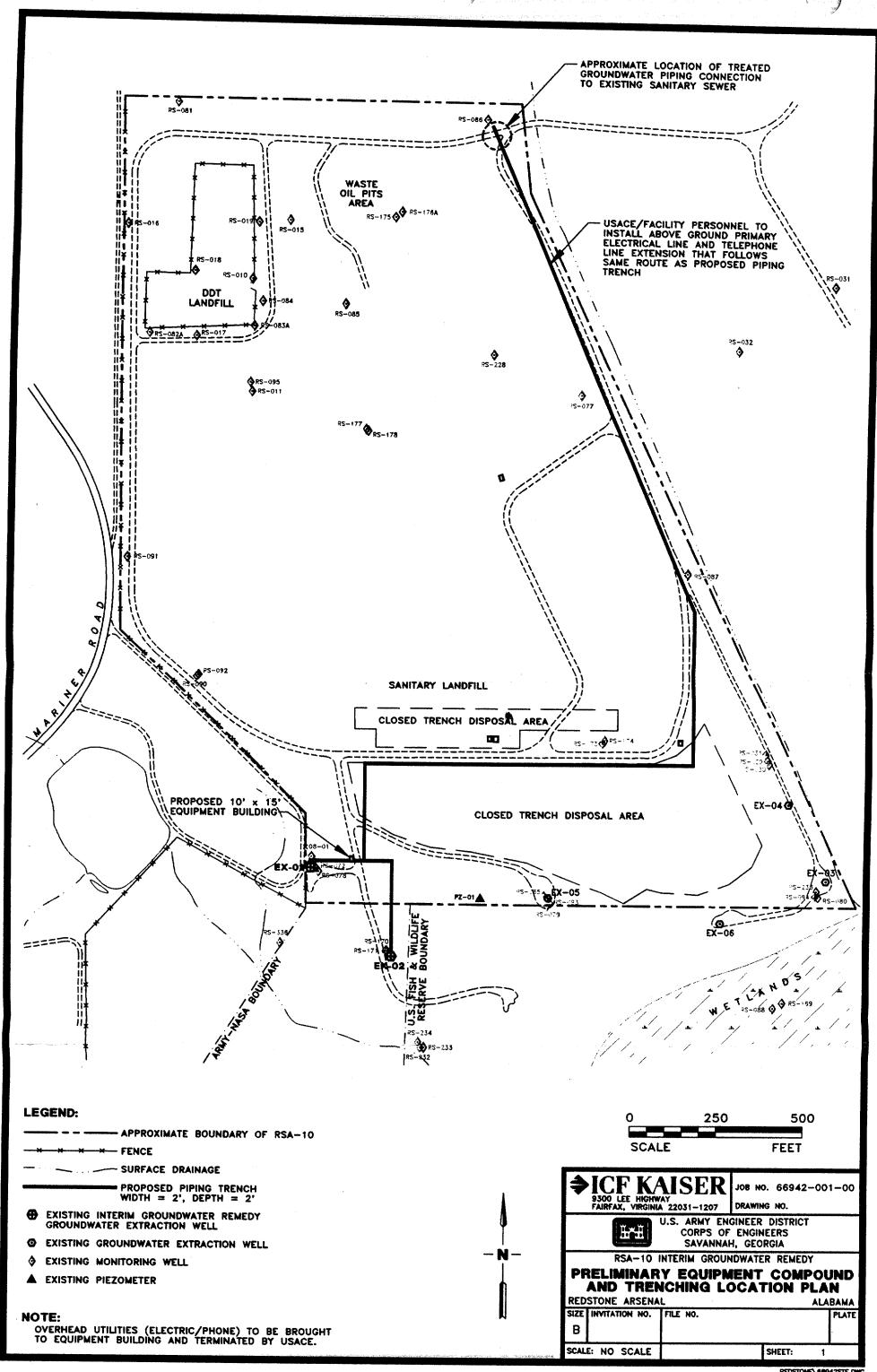
- Foster Wheeler Environmental Corporation (Foster Wheeler), 1995. An Informal Report: Hydrologic Considerations and Recommendations for the Interim Corrective Measure Design, RSA-10, Redstone Arsenal, Alabama. June 7, 1995.
- Geraghty and Miller, Inc., 1991. Identification and Evaluation of Potential Solid Waste Management Units and Areas of Concern (AOCs) at Redstone Arsenal, Alabama. February 1991.
- Lamoreaux, P.E. and Associates (PELA), 1988. Remedial Investigation Engineering Report for Redstone Arsenal, Alabama. Unit 1 DDT and Sanitary Landfills and Unit 2 Open Burn/Open Demolition Area. Final Document. September, 1988.

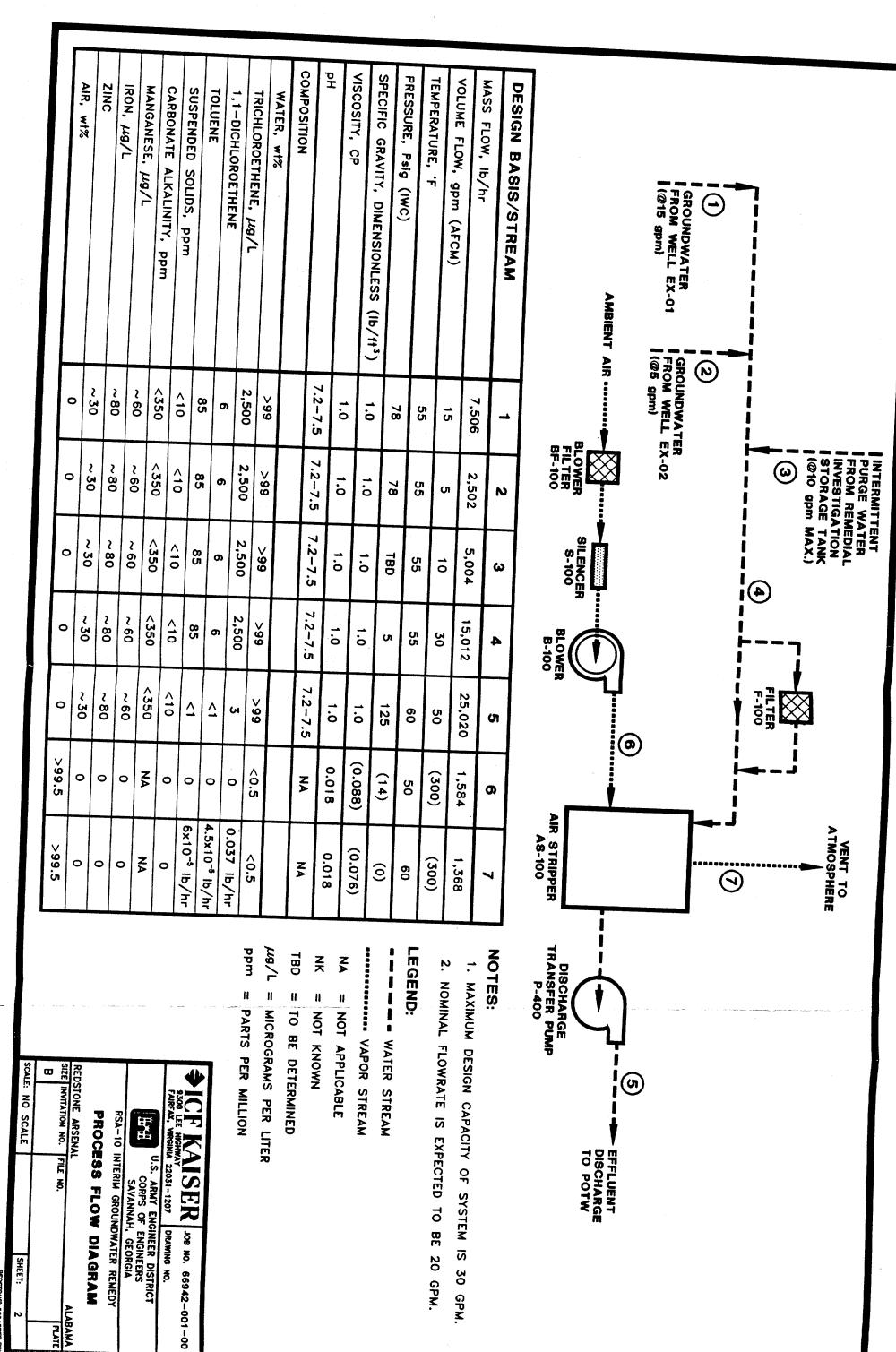
EXTRACTION AND TREATMENT SYSTEM

PREPARED FOR,

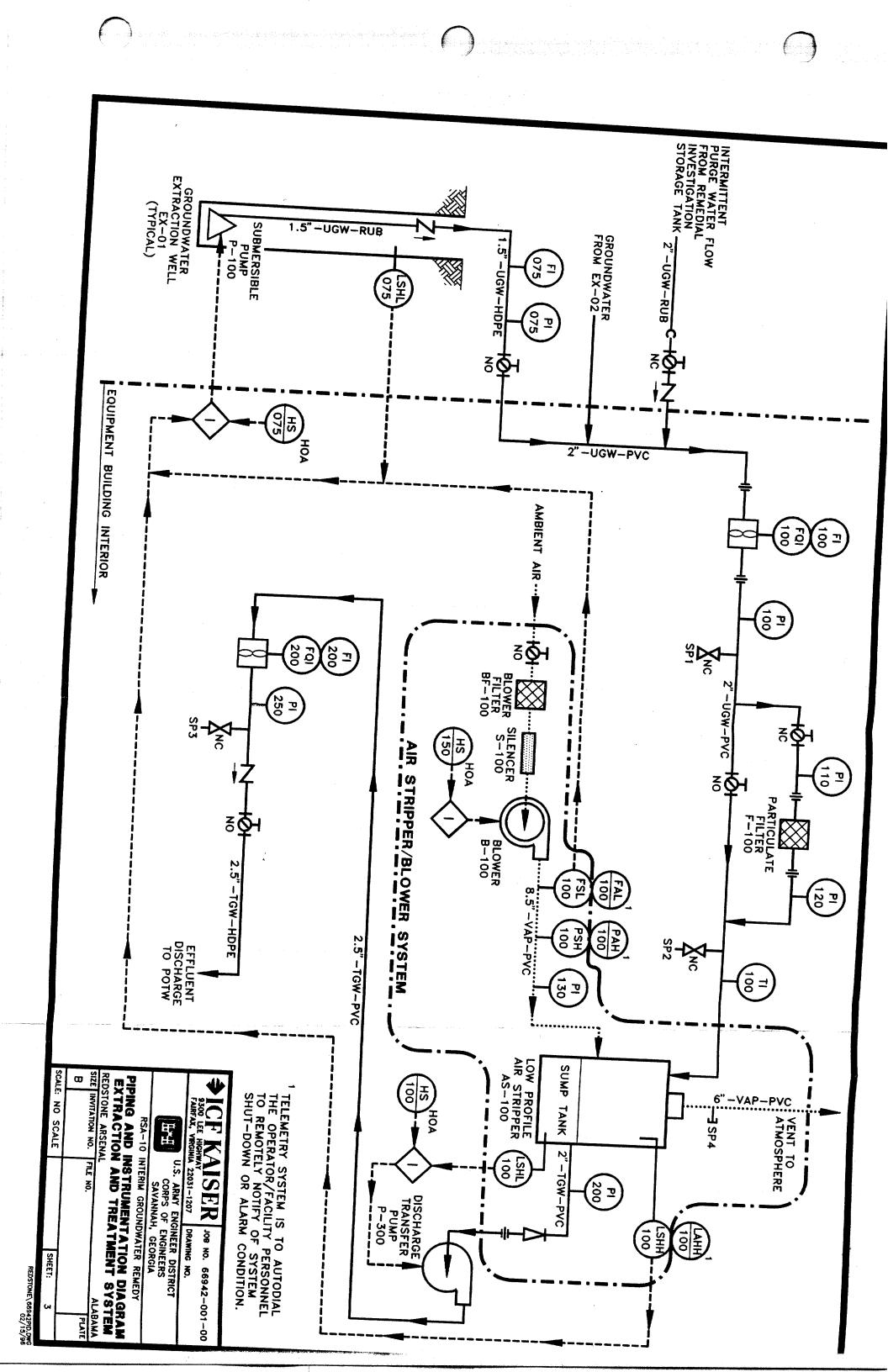
U.S. ARMY CORPS OF ENGINEERS

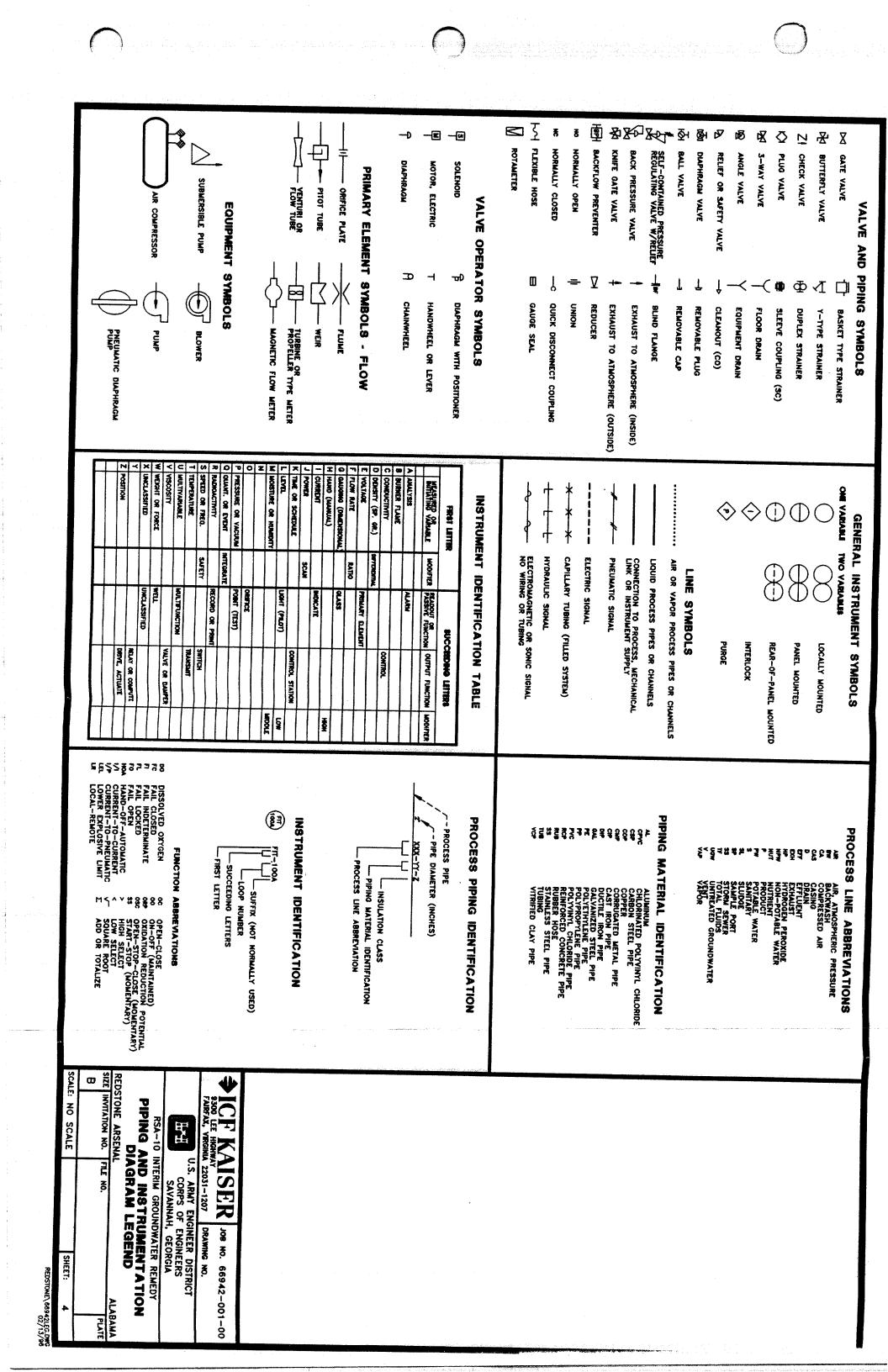
RSA-10 INTERIM GROUNDWATER REMEDY REDSTONE ARSENAL, ALABAMA

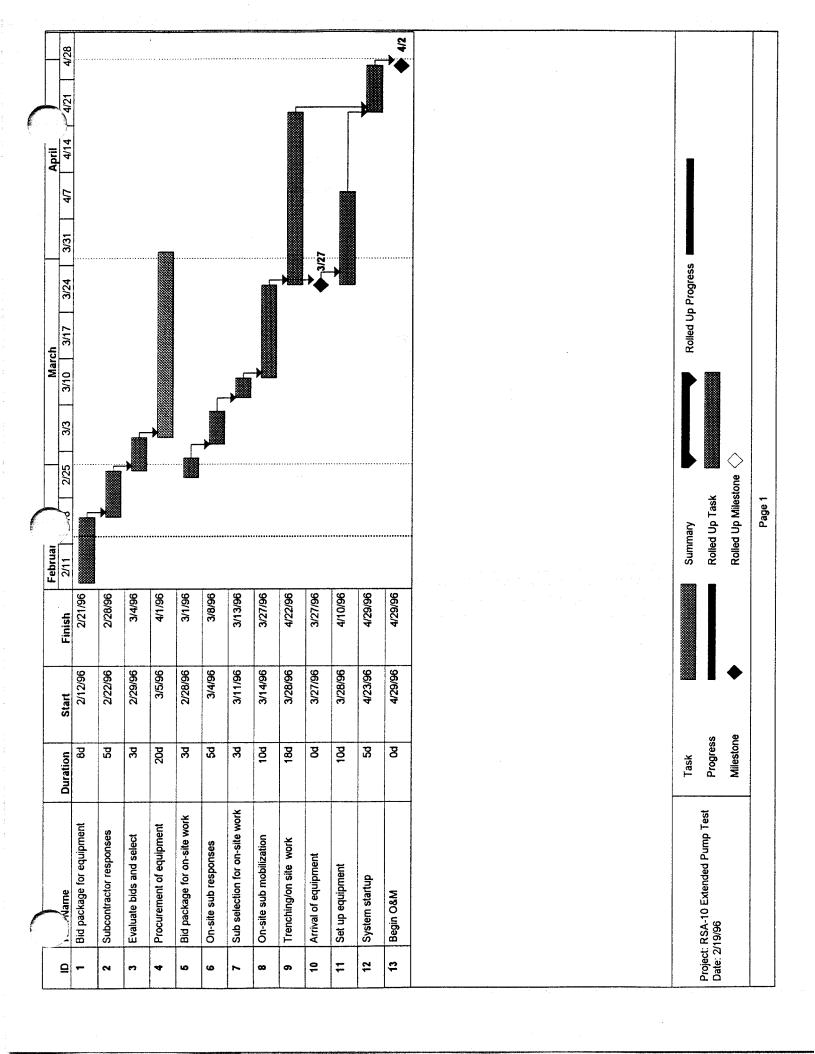

PROJECT NO. 66942-001-00 FEBRUARY 13, 1996

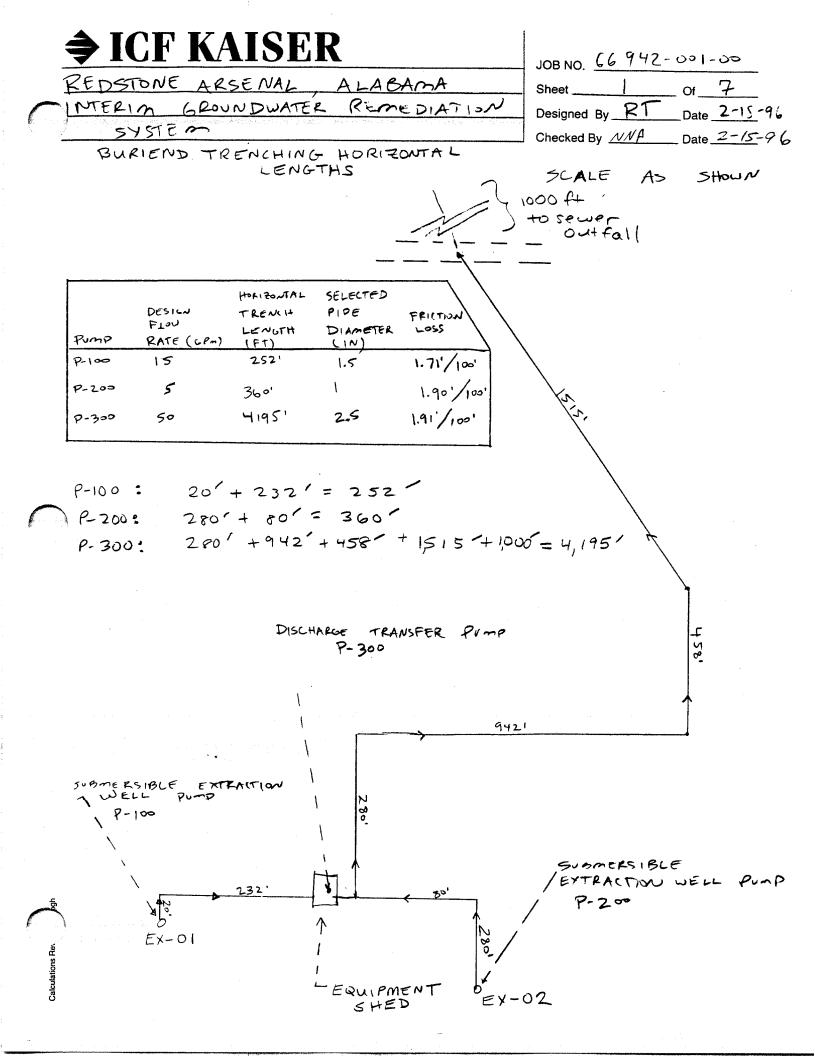

	SHEET INDEX
SHEET NO.	TITLE
-	PRELIMINARY EQUIPMENT COMPOUND AND TRENCHING LOCATION DI AN
2	PROCESS FLOW DIAGRAM
ယ	PIPING AND INSTRUMENTATION DIAGRAM - EXTRACTION AND TREATMENT SYSTEM
4	PIPING AND INSTRUMENTATION DIAGRAM LEGEND

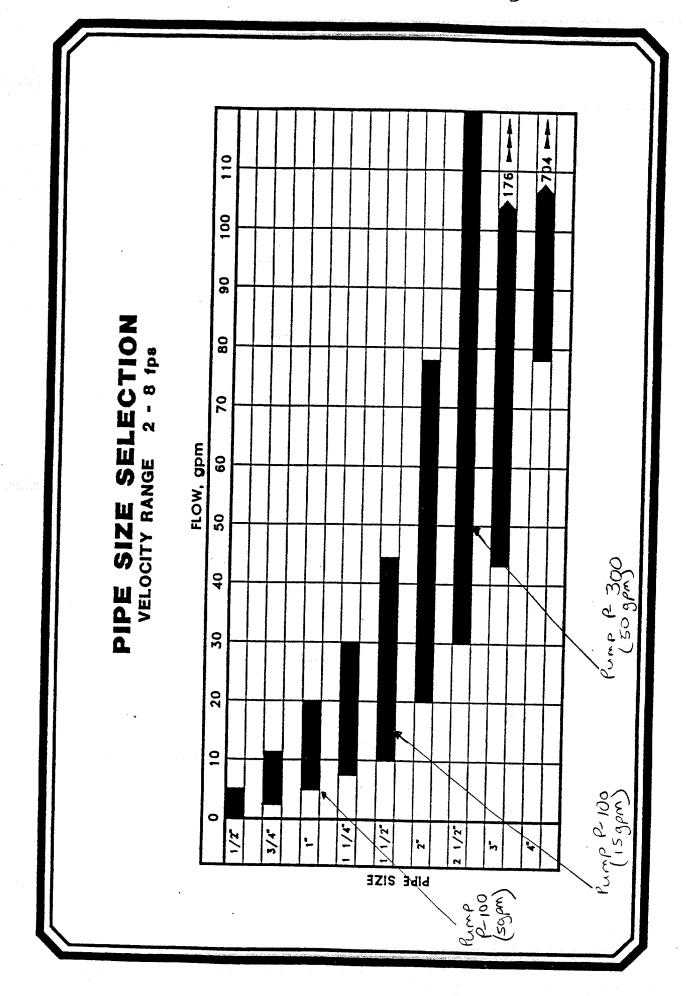
U.S. ARMY ENGINEER DISTRICT CORPS OF ENGINEERS SAVANNAH, GEORGIA


ICF KAISER 703/934-3000 FAX 703/934-9740 APPENDIX A


DRAWINGS




ALABAMA PLATE



APPENDIX B
DESIGN CALCULATIONS

⇒ ICF KAISER	JOB NO66942	- 201- 92
TOTAL DYNAMIC HEAD (TDH)	Sheet 3	······································
SUBMERSIBLE EXPACTION WELL PUMP	Designed By RT	
REDSTONE ARSENAL ALABAMA	Checked By NNA	
INTERIM GROUND WATER REMEDIATION SYSTEM		Date
SUBMERSIBLE EXTRACTION WELL PUR	P P-100	
HDPE PIPE SIZE = 1.5" => (=0.75"	Parameter Commence Co	
TDH = GAIN IN POTENTIAL ENERGY + GAIN IN + FRICTION LOSSES	N KINETIC E	NERGY
= $hd - hs + \frac{v^2}{20} + hf(s)^2 + hf(d)$		
= 150'-0 + [15gpm x mid 60 sec x 7,48 gal ,	1 (0.75)2 ft	=] 2 h f (d)
2(32,2)ft/s3		· Programmy and an and
= 152.7 + hf(d)		
hd - hs = TOP OF CASING ELEVATION PIFFERENCE =	~ 150' FROM	SITE MAR
hf(d) = HEAD LOSS IN PIPING FITTINGS, VALVES,	4 NO 500 AV	10321 FT
ASSUME 10% INCREASE IN TOH DUE VALVES, AND NOZZLES	TO FITINGS	70022657
held) calculated using 1.5" PIDE 1	HEAD LOSS @	5 6Pm
HORIZONTAL LOSSES = (ZO+ Z32') (1.71	,)	

HORIZONTAL LOSSES = (Z0+ Z3Z') (1.71')

= (Z5Z') (1.71')

= 4.3'

TDH = (152.7' + 4.3') (1.10)

= 172.7'

L 10% increase in TDH due to fittings, valves, and nozzles

DESIGN CAPACITY: 15 gpm @ 180/ TDH

GRUNDFOS MODEL 16E SCRIES 13 SPECIFIED

⇒ ICF KAISER	JOB NO. 66942-001-00
TOTAL DYNAMIC HEAD (TDH)	Sheet 4 0f 7
SUBMERSIBLE EXTRACTION WELL AMP	Designed By R Date 2-15-9
REDSTONE ARSENAL ALABAMA INTERIM GROUNDWATER REMEDIATION SYSTEM	Checked By NNA Date 2-15-9
SUBMERSIBLE EXTRACTION WELL P	ump P-200
HPPE PIPE SIZE = 1" > (=0.5"	
TDH = GAIN IN POTENTIAL ENERGY + GAI + FRILTION LOSSES	N IN KINETIC ENERGY
$= hd - hs + \frac{v^2}{2g} + hets > + he$	-q)
$= 150' - 0 + \left[\frac{591m \times \frac{mid}{60 \times c}}{2(32.2)} \right]$	7.46 gal 7 (0.5, 12 C+2) +
$= 151.8 + hr(d) \qquad 2(32.2)$	f+152
hd - hs = TOP of CASING ELEVATION DIFF	ERENLE = ~1501 FRom SI
hf (d) = HEAD LOSS IN PILING FITTINGS	, VALVES, AND NORZLE
ASSUME 10.10 INCREASE IN LOH DUE	TO FITTINGS, VALVES,
held) CALCULATED USING I" PIP	E HEAD LOSS @
5 6Pm of 1900	2
HORIZONTAL LOSSES = (280' - 80') (1.	00'
$-(360')$ $(\frac{1,90'}{100'})$)
= 6.8	
TDH = (151.8 + 6.8')(1.10) $= 174.5'$	
DESIGN CAPACITY: 5 gpm @ 180 / TD	H

GRUNDES MODEL SE SERIES

13 SPECIFIED

Calculations Re

TOTAL DYNAMIC HEAD (TDH) DISCHAPGE DUMP Designed By RT Date 2-15-9 Red tone Arsenal Alabama Therim Groundwater genedia than System Discharge Transer Pump P-300 HOPE Pipe S. 7e - 2.5" TOH- GAIN IN POTENTIAL ENERGY + GAIN IN KINETIC ENERGY + FAILTION Losses = ha - hs + \frac{v^2}{2g} + hers; + hf (d) = 35' - 0 + \begin{bmatrix} 50 gim \times \frac{ft^3}{1.78pl} \times \frac{ft^3}{7.78pl}	⇒ ICF KAISER	JOB NO. 66942 - 001-00
Red to Provide Assert Alabama The Pine Arsenal Alabama The Pine Groundwater Remedia Hon System Discharge Transer Pump P-300 HDPE Pine Size - 2.5" TDH: GAIN IN POTENTIAL ENERGY + GAIN IN KINETIC ENERGY FRICTION LOSSES = ha - hs + \frac{v^2}{2g} + he(s) + hf(d) = 35' - 0 + \begin{bmatrix} 50 grm * \frac{\text{cis}}{\text{cis}} * \frac{\text{fis}}{\text{72}} * \frac{\text{fis}}{\text{72}} \\ = 38.3' + hf(d) hd hs = \frac{\text{Elevation}}{\text{Dependence}} = \frac{35'}{\text{Fine}} \\ \text{Frictions} \\ \text{Losses} \\ (Using 2.5" pipe head loss @ sogram is 1.56'/100' pipe Head loss @ sogram is 1.56' /100' pipe Head loss @	TOTAL DYNAMIC HEAD (TDH)	Sheet 5 0f _ 7
Redstone Arsenal Alabama Checked By MNA Date 2-15-9 Interim Groundwater Remedia Hon System Discharge Transfer Pump P-300 HDPE Pipe S. Ze - 2.5" TDH= GAIN IN POTENTIAL ENERGY + GAIN IN KINETIC ENERGY + FAITION Losses = ha - hs + \frac{V^2}{2g} + he(s) + hf(d) = 35' - 0 + \bigg[50 gm * \frac{V}{100} * \frac{ft^3}{7.783\text{n}} * \frac{1}{72\frac{72}{2}} \frac{1}{2} \fra	DISCHARGE QUMP	Designed By RT Date 2-15-9
Therim Groundwater panedia ton System Discharge Transer Pump P-300 HDPE Pipe S. Ze - 2.5" TDH= GAIN IN POTENTIAL ENERGY + GAIN IN KINETIC ENERGY + FRICTION LOSSES = ha - hs + \frac{v^2}{2g} + he(s) + hf(d) = 35' - 0 + \bigg[50 fm \times \frac{ft^3}{1.48pl} \times \frac{ft^3}{1.48pl} \times \frac{ft^3}{1.48pl} \frac{72}{767} \frac{72}{fT^2} \bigg]^2 \cdot hf(d) = 38.3' + hf(d) haths = \frac{Elevation}{Difference} = \frac{35'}{100'} \times \frac{ft^3}{1.48pl} \times \frac{ft^3}{1.48pl} \times \frac{ft^3}{1.48pl} \frac{72}{700'} \times \frac{ft^3}{1.56'} \frac{ft^3}{100'} \times \frac{ft^3}{1.56'} \frac{ft^3}{100'} \times \frac{ft^3}{1.56'} \frac{ft^3}{100'} \times \frac{ft^3}{100'} \frac{ft^3}{100'	Rodstone Arsenal ALabama	1
TDH= GAIN IN POTENTIAL ENERGY * GAIN IN KINETIC ENERGY + FRICTION Losses = ha - hs + $\frac{V^2}{2g}$ + he(s) + hf(d) = $35' - 0$ + $\left[\frac{50}{2g}\right]$ + hf(d) = $38.3'$ + hf(d) hd-hs = $\frac{100}{2}$ +	Interim Groundwater Remediation System Discharge Transfer Pump	P-300
= hd - hs + $\frac{\sqrt{2}}{2g}$ + he(s) + hf(d) = 35^{1} - 0 + $\left[\frac{5^{\circ}}{2g}\right]$ + hf(d) = 38.3° + hf(d) = $\frac{7000}{2}$ = $\frac{7000}{2}$ + hf(d) hd-hs = $\frac{7000}{2}$ + hf(d) hf(d) = HEAD LOSS IN PIPING, FITTINGS, VALVES + Horizontal losses (using 2.5" pipe head loss @ sogpm is 1.56"/100" pipe Horizontal Losses = $\frac{1515^{\circ}}{190^{\circ}}$ + hf(d) = $\frac{1.56^{\circ}}{190^{\circ}}$ HeAD INCREASE DUE TO FITTINGS, VALVES, AND NORTHERS TDH = $\frac{38.3 + 80.1^{\circ}}{38.3 + 80.1^{\circ}}$ (1.10)	HDPE Pipe Size - 2.5" => (= 1.25'	,
= 35' - 0 + [50 grm * 605 * 7.48 ml * 7 (123) 2 fr2] + h f (d) 2 (32,2) ft/s2 = 38,3 ' + h f (d) h_d-hs = Elevation = ~35 from site map hf(d) = HEAD LOSS IN PIPING, FITTINGS, VALVES + Horizontal losses (using 2.5" pipe head loss @ sogpm is 1.56 /100' ripe Herizontal Losses = (1515' + 458' + 942' + 280' + 1001') (1.56') [H,195') (1.97) = 80-1 Assume 10°10 HEAD INCREASE DUE TO FITTINGS, VALVES, AND NORZELES TDH = (38.3 + 80.1') (1.10)	+ FRICTION LOSSES	N KINETIC ENERGY
2 (32,2) ft/s? = 38.3 ' + hf (d) hd-hs = Elevation Difference = ~35 from site map hf(d) = HEAD LOSS IN PIPING, FITTINGS, VALVES + Horizontal losses (using 2.5" pipe head loss @ sogpm is 1.56'/100' ripe HORIZONTAL LOSSES = (1515'+ 458' + 942' + 280' + 1001) (1.56') HOSSUME 10°10 HEAD INCREASE DUE TO FITTINGS, VALVES, AND NOZZLES TDH = (38.3 + 80.1') (1.10)	▼	
= 38.3 ' + hf (d) hd-hs = Elevation Difference = ~35 From site map hr(d) = HEAD LOSS IN PIPING, FITTINGS, VALVES + Horizontal losses (using 2.5" pipe head loss @ sogpm is 1.56'/100' pipe HORIZONTAL LOSSES = (1515'+ 458' + 942'+ 280' + 1001) (1.56') = (4,195') (1.91') = 80.1 PASSUME 10°10 HEAD INCREASE DUE TO FHTINGS, VALVES, AND NOZZLES TDH = (38.3 + 80.1') (1.10)		
hd-hs = Elevation = ~35 from site map hf(h) = HEAD LOSS IN PIPING, FITTINGS, VALVES + Horizontal losses (using 2.5" pipe head loss @ sogpm is 1.56 /100 pipe HORIZONTAL LOSSES = (1515'+ 458' + 942'+ 280' + 1001) (1.56') = (4,195') (1.91') = 80.1 ASSUME 10°10 HEAD INCREASE DUE TO FITTINGS, VALVES, AND NOZZLES TDH = (38.3 + 80.1') (1.10)	2 (32,2)	f+152
hr(d) = HEAD LOSS IN PIPING, FITTINGS, VALVES + HORIZON tal losses (USING) 2.5" Pipe head loss @ sogpm is 1.56 /100 ripe HORIZONTAL LOSSES = (1515'+ 458' + 9421+ 280' + 1000') (1.56') = (4,195') (1.91) = 80-1 ASSUME 10°10 HEAD INCREASE DUE TO FITTINGS, VALVES, AND NOZZLES TDH = (38.3 + 80.1') (1.10)	= 38,3 ' + hf (d)	
(USING) 2.5" pipe head loss @ sogpm is 1.56 /100 pipe HORIZONTAL LOSSES = (1515'+ 458' + 942'+ 280' + 1000') (1.56') = (4,195') (1.91') = 80.1. ASSUME 10°10 HEAD INCREASE DUE TO FITTINGS, VALVES, AND NOZZLES TOH = (38.3 + 80.1') (1.10)	hd-hs = Flevation = ~35 from si	te map
ASSUME 10°10 HEAD INCREASE DUE TO FITTINGS, VALVES, AND NOZZLES TDH = (38.3 + 80.1') (1.10)	(using 2.5" pipe head loss @	50gpm is 1.56 /100 pipe
VALVES, AND NOZZLES TDH = (38.3 + 80.1') (1.10)	HORIZONTAL LOSSES = (1515+ 458+ 942). = (4,1951)(1.91)	= 80.1
	ASSUME 10°10 HEAD INCREASE VALVES, AND NOZZLES	DUE TO FITTINGS,
= 130.1	TDH = (38.3 + 80.1')(1.10)	
	= 130.1	

Design Capacity: 50 gpm @ 144'TDH

Price Pump Co. Model A-100 series is specified.

3-15

TOLL-RAND CAMERON HYDRAULIC DATA

INGE

Friction of Water New Steel Pipe (Continued)
(Based on Darcy's Formula)
1 Inch

100		Head loss ft per 100 ft	1.26 2.60 4.40 6.63 9.30	15.9 24.3 34.4 46.2 59.7	74.9 91.8 110 131 153	
Schedule 160 steel	"inside di	Velocity head ft	.023 .053 .094 .147 .211	.376 .587 .845 1.15 1.50	1.90 2.35 3.38 3.97	
Sche	. 81	Velocity ft per sec	1.23 1.85 2.46 3.08 3.69	4.92 6.15 7.38 8.61 9.84	11.07 12.30 13.53 14.76 15.99	
sch 80	e	Head loss fi per 100 ft	.599 1.19 1.99 2.99 4.17	7.11 10.8 15.2 20.4 26.3	32.9 40.3 48.4 57.2 66.8	77.1 88.2 119 154 194
Extra strong steel—sch 80	957" inside dia	Velocity head ft	10.00 20.00 11.00 10.00 11.00	20 23 31 54 57 79	1.00 1.24 1.50 1.8 2.1	2.2.2.3.3.8.8.6.3.0.3.0.3.0.3.0.3.0.3.0.3.0.3.0.3.0.3
Extra str	36:	Velocity ft per sec	. 89 1.34 1.79 2.23 2.68	3.57 4.46 5.36 6.25 7.14	8.03 8.92 9.82 10.7	12.5 13.4 15.6 17.9 20.1
sch 40	6	Head loss ff per	285 265 265	4.50 6.81 9.58 12.8 16.5	20.6 25.2 30.3 35.8 41.7	48.1 55.0 74.1 96.1 12.1
Standard wt steel sch 40	1.049" inside dia	Velocity head ft	.009 .019 .034 .054	.137 .214 .308 .420 .548	.694 .857 1.036 1.23	1.68 1.93 2.62 3.43 4.33
Standard	1.0	Velocity ft per sec	0.74 1.11 1.48 1.86	2.97 3.71 4.45 5.20 5.94	6.68 7.42 8.17 8.91 9.65	10.39 11.1 13.0 14.8
	1	Flow garl min	21.62 4 20 20	8 0 1 1 1 1 1 1 1	18 22 24 26	82 0 54 45 45 55 85 64 54

1½ Inch

leel	83	Head loss ff per 100 ft	.806 1.20 1.61 2.14 2.73	4.12 5.78 7.72 9.92 12.4	15.1 23.2 32.9 44.2 57.3	88.3 126 170 221 279
Schedule 160-steel	1.160" inside dia	Velocity head ft	.023 .036 .051 .070 .092	. 143 . 280 . 366 . 463	.572 .894 1.29 1.75 2.29	3.58 5.15 7.01 9.16 11.59
Sche	1.1	Velocity ft per sec	1.21 1.52 1.82 2.13 2.43	3.04 3.64 4.25 5.46	6.07 7.59 9.11 10.63	15 18 18.22 21.25 24.29 27.32
sch 80	a	Head loss ft per 100 ft	1.04 1.03 1.09 1.09	2.55 3.57 4.75 6.10 7.61	9.28 14.2 20.1 27.0 34.9	53.7 76.5 103 134 168
Extra strong steel—sch 80	1.278" inside dia	Velocity head ft	.015 .024 .034 .048	097 140 190 249 315	.388 .607 .874 1.19 1.55	2.43 3.50 4.76 6.21 7.86
Extra stro	1.2	Velocity ft per sec	1.90 1.25 1.50 1.75 2.00	2.50 3.00 4.50 4.50	5.00 6.25 7.50 8.75	12.5 15.0 17.5 20.0 22.5
sch 40	æ	Head loss n per 100 m	.35 .72 .72 .95	1.74 2.45 3.24 4.15	6.31 9.61 13.6 18.2 23.5	36.2 51.5 69.5 90.2
Standard wt steel sch 40	.380" inside dia	Velocity head ft	.011 .018 .026 .035	.072 .103 .140 .183	286 431 644 876 1.14	1.79 2.57 3.50 4.53 5.79
Standard	1.30	Velocity ft per sec	.858 1.073 1.29 1.50	2.15 2.57 3.00 3.43 3.86	4.29 5.36 6.44 7.51	10.7 12.9 15.0 17.2 19.3
	i .	V Per cim	45018	12 12 14 16	88888	88588

Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior surface. Any factor of safety must be estimated from the local conditions and the requirements of each particular installation. It is recommended that for most commercial design purposes a safety factor of 15 to 20% be added to the values in the tables—see page 3-5.

Friction of Water New Steel Pipe (Continued) (Based on Darcy's Formula) 11/5 Inch

Velocity Velocity	1 4	1 610" in a Line in		ince library and a second		20 100	;	190 - 319	31861
Head Velocity Velocity Head Hose	۳ ب	apisui ni	dia	-	500" inside	dia	_	.338" inside	dia
The part Their T		Velocity	Head	Velocity	Velocity	Head	Valocity	Velocity	He et
6 .166 .73 .01 .233 .913 .013 246 .91 .02 .346 1.14 .020 447 1.27 1.29 .02 .348 1.14 .020 1.84 1.63 .04 .346 1.14 .020 .04 1.84 1.82 .18 .08 .04 .080 .065 .065 1.84 .182 .18 .03 .04 .120 .226 .081 .065 1.84 .182 .18 .05 .120 .228 .085 .085 .085 .085 .085 .085 .085 .085 .085 .085 .085 .085 .228 .085 .228 .085 .228 .232 .244 .255 .246 .384 .456 .323 .274 .116 .228 .241 .456 .323 .241 .456 .327 .445 .456 .456 .456 .456		head	# 00 # # # #	ft per sec	head #	# 00 # 00	ft per sec	head	# 00 F E
4 340 109 02 478 101 020 040		900	.166	5.2	5.5	233	616	013	4
9 447 127 0.3 639 160 040 1 701 1.45 0.04 180 2.28 0.04 0.05 1.20 2.28 0.065		910	340	8	8	2	3,5	88	00.
1.34 1.63 0.4 .880 2.05 0.065 1.18 2.18 0.05 1.20 2.28 0.081 1.18 2.18 0.0 2.14 3.20 1.16 2.40 3.27 1.7 3.41 4.11 2.05 4.10 2.14 3.27 1.7 3.41 4.11 2.82 4.10 4.10 2.14 3.27 1.7 3.41 4.11 2.24 4.10 4.10 2.14 3.2 3		025	.567	1.27	នួន	£ 8	1.60	960	1.35
5 1.84 1.82 0.5 1.20 2.28 0.81 6 1.51 2.54 1.0 2.14 3.27 1.16 2.40 3.27 1.7 3.41 4.11 2.82 3.03 4.10 2.24 3.27 1.7 3.41 4.11 2.82 3.03 4.10 4.36 3.0 2.7 4.16 4.56 3.0 3.0 2.41 4.76 4.72 3.5 4.65 3.0 3.0 3.0 2.41 4.76 4.72 3.5 4.65 3.0 3.0 3.0 3.47 4.76 4.72 3.5 4.6 5.2 3.0 3.0 3.0 4.76 4.77 4.0 4.0 7.82 6.36 4.65 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 </td <td>_</td> <td>.031</td> <td>701</td> <td>1.63</td> <td>90.</td> <td>088</td> <td>2.05</td> <td>982</td> <td>1.67</td>	_	.031	701	1.63	90.	088	2.05	982	1.67
6 T.55 2.74 1.01 2.74 1.16 9 1.83 2.74 1.07 2.74 2.74 1.16 2.40 3.27 1.17 3.41 4.11 2.82 2.07 4.10 4.36 2.29 2.29 2.27 4.15 4.56 3.23 4.10 4.36 2.29 2.20 4.15 4.56 3.23 2.41 4.36 4.36 3.0 2.25 4.46 5.23 3.23 2.41 4.72 3.56 4.0 7.82 6.30 3.24 4.65 3.23 3.47 4.72 3.5 4.0 7.82 6.80 3.24 4.65 3.27 1.17 4.65 3.23 3.23 3.23 3.23 3.24 3.25 3.24 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25 <td></td> <td>650</td> <td></td> <td>.82</td> <td>50.</td> <td>1.20</td> <td>5.28</td> <td>8</td> <td>2.03</td>		650		.82	50.	1.20	5.28	8	2.03
5 2.40 3.27 1.7 3.41 4.11 2.62 7 3.48 3.27 1.7 4.15 4.56 3.23 4.10 4.36 3.99 2.5 4.96 5.02 4.15 4.65 4.10 4.36 3.99 2.5 4.96 5.02 3.91 5.46 4.65 3.91 5.46 4.65 3.91 5.46 4.65 3.91 5.46 4.65 3.93 5.46 4.65 3.93 5.46 4.65 3.93 5.46 4.65 3.91 5.46 3.91 5.46 3.93 5.46 3.93 5.46 3.93 5.46 3.93 5.46 3.93 5.46 3.93 5.46 3.93 5.46 3.93 5.46 3.93 5.46 3.93 5.46 3.93 5.46 3.93 5.46 3.93 5.46 3.93 5.46 3.93 5.46 3.93 5.46 3.93 5.46 3.93 5.46 3.93		86.8		2.55	955	2.2	3.20	116	3.78
2.92 3.63 2.0 4.11 2.62 3.48 3.99 2.5 4.96 5.02 3.23 4.70 4.72 3.9 2.5 4.96 5.02 3.23 4.70 4.72 3.9 2.5 4.96 5.02 3.23 4.70 4.72 3.5 4.0 7.82 6.0 3.23 7 6.23 5.45 4.0 7.82 6.39 5.46 7 6.23 5.41 5.9 11.3 7.70 8.24 4.65 7 8.0 6.7 14.0 7.82 6.39 6.34 4.65 3.23 7 8.0 6.5 6.0 7.4 14.0 8.22 1.05 3.23 1.27 1.27 1.27 1.28 1.27 1.29 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 <td>+</td> <td>125</td> <td>9</td> <td>3.07</td> <td>:</td> <td></td> <td>3</td> <td>)</td> <td></td>	+	125	9	3.07	:		3)	
7 3.48 3.99 25 4.96 5.02 391 4.76 4.75 4.36 3.0 5.84 5.02 391 4.70 4.75 4.36 3.0 5.84 5.02 391 4.70 4.36 3.0 4.0 7.82 6.39 5.46 7.04 5.81 5.2 10.1 7.30 5.22 10.2 6.80 5.81 5.6 11.3 7.76 334 12.7 12.7 8.70 6.30 7.4 14.0 8.67 1.17 1.77 1.25 1.05 1.76 1.33 1.27 1.27 1.28 1.43 1.57 1.44 1.77 1.14 1.77 1.14 1.25 1.24 1.14 1.25 1.24 1.14 1.25 1.24 1.14 1.25 1.14 1.25 1.14 1.25 1.14 1.25 1.14 1.25 1.14 1.25 1.14 1.25 1.14 1.25		154	7.85	36	2 8	4.15	- 5	3,52	2 5
4.76 4.36 30 5.84 5.48 5.48 5.84 5.48 5.49 5.48 5.49 5.49 5.49 5.49 5.49 5.49 5.49 5.49 5.49 5.49 5.49 5.49 5.49 5.49 1.40 8.67 1.17 1		187	3.48	3.99	52	4.96	5.02	391	9.9
3 5.47 5.08 40 7.82 6.39 634 6.23 5.45 5.46 6.91 6.95 7.27 6.82 7.27 7.50 6.17 5.9 11.3 7.73 6.82 7.27 8.00 6.54 6.6 12.6 11.6 7.30 82.8 7 8.0 6.90 7.4 14.0 8.67 1.17 1.12.9 7.28 9.0 16.9 9.9 14.0 8.67 1.17 1.12.9 7.28 9.0 16.9 9.9 1.85 10.5 1.71 1.12.9 7.29 1.8 10.5 1.14 2.02 1.71 1.12.0 8.7 1.1 8 2.2 29.9 1.14 3.41 1.25 3.41 1.25 3.41 4.45 3.5 4.45 1.71 4.65 5.45 1.71 4.65 5.45 1.71 4.65 5.45 1.71 4.65 5.41		261	4.10	4.75 4.72	8.8	2.00 2.00 2.00 2.00	5.48 5.93	.465 546	2.2
6.23 5.45 4.6 6.91 6.85 7.75 6 7.30 6.17 5.2 10.1 7.30 8.28 7.30 6.17 5.9 10.1 7.30 8.29 10.5 7 8.76 6.90 7.4 14.0 8.67 1.17 8 10.8 7.26 8.2 15.4 9.13 1.29 11.8 7.69 .99 18.5 10.04 1.57 14.0 8.35 1.08 20.1 10.50 1.71 15.2 9.06 1.28 2.04 1.71 15.2 9.06 1.28 2.0 1.71 15.2 9.06 1.28 2.0 1.71 2.5 15.2 9.06 1.26 23.4 1.71 2.5 15.3 11.8 2.2 14.8 2.2 2.45 15.3 11.8 2.2 4.1 2.5 2.45 15.4 1.2		303	5.47	5.08	40	7.62	6.39	459	13.9
6 7.00 6.74 .52 10.1 7.30 .828 7.00 6.54 .66 12.6 12.6 .822 1.05 8 10.6 7.26 .69 .74 14.0 8.67 1.17 11.6 7.26 .69 .74 14.0 8.67 1.17 11.9 7.26 .69 .74 14.0 8.67 1.17 11.9 7.26 .69 .74 14.0 8.67 1.17 11.9 .78 .99 1.85 .106 1.77 11.0 .73 .18 .21 1.14 .20 11.0 .74 .22 .24 .24 .24 11.0 .22 .45.3 .15.9 .24 .24 40.8 .14.5 .37 .66.0 .14.03 .34 40.8 .15.4 .37 .66.0 .26.0 .26.0 40.8 .17.2 .46.0 .13.0		30.	6.23	5.45	9 6	6.	6.85	727	15.9
0 8.80 6.54 .66 12.6 8.22 1.05 10.8 7.26 82 15.4 913 11.7 11.8 7.26 82 15.4 913 11.2 11.8 7.26 90 16.9 9.93 11.1 11.8 7.99 199 18.9 10.4 1.57 14.0 8.35 1.08 20.1 10.95 1.71 15.2 9.06 1.28 23.6 11.41 2.02 19.8 9.99 1.6 23.6 11.41 2.02 27.3 11.8 2.2 23.4 12.55 2.45 27.3 11.8 2.2 39.2 14.83 3.41 30.0 13.6 2.2 39.2 14.83 3.41 45.9 15.4 3.7 68.0 5.9 45.9 16.3 3.7 4.1 7.2 6.5 57.0 17.2 4.6 82.0		946	5 8.	6.17	, 65 5	1.5	2.38	828	= %
9.76 6.90 .74 14.0 8.67 1.17 11.8 7.26 .82 15.4 9.13 1.29 11.8 7.26 .90 18.9 9.58 1.29 11.0 7.99 .99 18.9 10.04 1.57 15.2 8.72 1.18 20.1 10.05 1.71 16.5 9.06 1.28 23.6 11.41 2.02 23.4 10.9 1.6 22 24.4 12.55 2.45 27.3 11.8 2.2 39.2 14.83 3.41 27.3 11.8 2.2 39.2 14.83 3.41 30.0 13.6 2.2 39.2 14.83 3.41 45.9 15.4 3.7 68.0 17.11 4.55 45.9 15.4 3.7 68.0 19.0 5.17 45.9 16.2 3.0 17.11 4.55 4.55 45.9 16.2 <t< td=""><td>-+</td><td>200</td><td>6.80</td><td>6.54</td><td>99.</td><td>12.6</td><td>8.22</td><td>20.</td><td>2</td></t<>	-+	200	6.80	6.54	99.	12.6	8.22	20.	2
10.6 7.26 82 15.4 9.13 1.29 7 12.9 7.26 .82 16.9 16.9 1.29 1.29 7 14.0 8.35 1.08 1.09 1.05 1.71 1 15.2 8.72 1.18 21.8 10.95 1.71 2 16.5 9.99 1.28 23.6 11.41 2.02 2 23.4 10.9 1.6 22.6 2.9 2.9 2.9 2 23.4 10.9 1.6 2.2 33.6 1.46.3 3.41 2 23.4 10.9 1.6 2.2 45.3 15.97 3.56 3 1.5 11.8 2.2 45.3 15.97 3.56 2.9 40.8 14.5 3.3 58.7 14.63 3.41 4.55 40.8 15.4 3.7 46.0 10.40 5.17 5.17 40.8 16.2 2.9 51.0 5.17 4.55 4.55 40.8 16.2 </td <td></td> <td>577</td> <td>9.76</td> <td>06.90</td> <td>74</td> <td>14.0</td> <td>8.67</td> <td>1.17</td> <td>25.0</td>		577	9.76	06.90	74	14.0	8.67	1.17	25.0
7 12.9 7.99 18.5 10.50 1.57 14.0 8.35 1.08 20.1 10.50 1.71 3 15.2 8.72 1.18 21.8 10.95 1.71 16.5 9.08 1.28 23.6 11.41 2.02 1.71 23.4 10.9 1.8 2.2 30.2 11.41 2.02 27.3 11.8 2.2 30.2 14.83 3.41 31.5 12.7 2.5 45.3 15.97 3.96 40.8 13.6 2.2 30.2 14.83 3.41 40.8 13.6 3.7 16.3 3.41 4.55 40.8 15.4 3.7 68.0 19.40 5.84 51.3 16.3 4.1 73.8 20.54 6.55 51.3 20.5 4.5 8.0 20.5 6.0 51.3 20.5 20.5 10.6 20.6 10.7 5			2 =	e 2	8 8	15.4	5.3	2,5	27.6
3 15.2 8.72 1.18 20.1 10.50 1.71 5 16.5 9.08 1.28 23.6 11.41 2.02 23.4 10.9 1.65 23.6 11.41 2.02 23.4 10.9 1.65 23.6 11.41 2.02 27.3 11.8 2.2 33.6 13.6 2.9 31.5 12.7 2.5 45.3 15.97 3.6 40.8 12.2 39.2 14.63 3.41 4.5 40.8 13.6 2.9 51.8 17.11 4.55 40.8 15.4 3.7 66.0 19.40 5.84 51.3 16.3 4.1 73.8 20.54 6.55 57.0 17.2 4.6 82.0 21.6 6.5 53.6 20.6 1.7 122.8 8.08 7.2 55.4 20.6 1.0 2.5 10.9 2.5 10.7 105 </td <td></td> <td>747</td> <td>12.9</td> <td>66.2</td> <td>8</td> <td>19.5</td> <td>20.</td> <td>1.57</td> <td>35</td>		747	12.9	66.2	8	19.5	20.	1.57	35
5 15.2 8.72 1.18 21.8 11.41 2.02 18.6 9.08 1.58 23.4 11.41 2.02 23.4 10.99 1.65 23.6 11.41 2.02 27.3 11.8 2.2 39.2 14.83 2.91 31.5 12.7 2.5 45.3 15.97 3.96 40.8 13.6 2.9 51.8 17.11 4.55 40.8 15.4 3.7 66.0 19.40 5.84 45.9 15.4 3.7 66.0 19.40 5.84 45.9 15.4 3.7 66.0 19.40 5.84 57.0 17.2 4.6 82.0 20.54 6.55 57.0 17.2 4.6 82.0 21.68 7.29 59.9 23.6 10.93 25.10 9.78 10.6 55.4 10.0 17.5 29.66 13.7 139 22.6 10.0	-+-)10:	2.4.0	33	8	20.1	10.50	1.71	36.1
19.2 9.99 1.50 23.6 11.41 2.02 23.4 10.9 1.65 23.6 13.6 2.91 27.3 11.8 2.2 39.2 14.69 2.94 31.5 12.7 2.5 45.3 15.97 3.96 30.0 13.6 2.9 51.8 17.11 4.55 40.8 13.6 3.7 66.0 17.11 4.55 45.8 15.4 3.7 66.0 17.11 4.55 45.8 15.4 3.7 66.0 19.40 5.84 45.8 15.4 3.7 66.0 19.40 5.84 57.0 17.2 4.1 73.8 20.54 6.55 57.0 18.2 5.1 90.7 22.82 8.06 55.4 10.0 17.4 120.6 13.7 11.6 10.5 20.0 13.1 22.6 13.7 13.7 10.6 20.0 13.1		.889 289	15.2	8.72	1.18	21.8	10.95	1.86	39.5
23.4 10.9 1.6 33.6 13.69 2.91 31.5 12.7 2.5 45.3 15.97 3.96 40.8 14.5 3.7 16.90 2.91 45.8 15.4 10.9 17.1 4.55 45.8 15.4 16.3 4.1 73.8 20.54 6.55 57.0 17.2 4.6 82.0 21.68 7.29 63.0 18.2 5.1 19.7 22.82 8.08 75.8 20.0 5.1 151.6 27.38 11.6 13.8 22.0 13.1 22.8 13.8 22.0 13.1 22.8 13.8 22.0 13.1 22.8		1.17	9.6	3 6	3.5	2 5	3.55	202	42.4
27.3 11.8 2.2 39.2 14.63 3.41 31.5 12.7 2.5 45.3 15.97 3.96 40.8 13.6 2.9 51.8 17.11 4.55 45.9 16.4 3.7 66.0 17.11 4.56 45.9 16.4 3.7 66.0 17.11 4.55 45.9 16.3 4.1 73.8 20.54 6.55 57.0 17.2 4.6 82.0 21.68 7.29 63.0 17.2 4.6 82.0 21.68 7.29 63.0 17.2 4.6 82.0 25.10 9.78 105 23.6 17.4 120.8 27.56 13.7 105 27.2 11.5 29.6 13.7 15.0 27.2 11.5 22.6 13.7 17.0 17.8 25.7 20.1 17.0 17.8 25.7 20.1 17.0 17.8 <	-	1.39	23.4	10.9	89.	33.6	13.69	291	9.0
31.5 12.7 2.5 45.3 15.97 3.96 40.8 13.6 2.9 51.8 17.11 4.55 45.9 15.4 3.7 68.0 19.25 5.17 45.9 15.4 3.7 68.0 19.25 5.17 45.9 15.3 3.7 68.0 19.25 5.17 57.0 17.2 4.6 82.0 27.68 5.84 57.0 17.2 4.6 82.0 27.68 7.29 60.9 23.6 10.9 25.10 9.72 10.78 105 23.6 17.4 120.8 27.28 10.78 139 27.2 11.5 29.66 13.7 150 27.2 11.5 20.1 13.7 150 23.0 13.1 22.8 13.7 150 23.0 13.1 22.8 13.7 150 23.0 13.1 23.7 13.1 150 <t< td=""><td>-+</td><td>1.63</td><td>27.3</td><td>11.8</td><td>2.2</td><td>39.2</td><td>14.83</td><td>3.41</td><td>70.6</td></t<>	-+	1.63	27.3	11.8	2.2	39.2	14.83	3.41	70.6
45.0 13.6 2.9 51.8 17.11 4.55 45.8 16.3 3.7 68.0 19.25 5.17 45.9 15.4 3.7 68.0 19.25 5.17 57.0 17.2 4.6 82.0 20.54 6.55 57.0 17.2 4.6 82.0 21.68 7.29 58.0 20.0 6.2 109.3 25.10 9.72 8.09 74 129.6 27.2 10.6 27.2 11.6 9.72 11.6 13.7 139 27.2 11.5 20.1 17.8 13.7 13.7 170 20.9 13.1 22.6 13.7 22.6 13.7 170 20.9 13.1 22.6 23.6 13.7 22.6 170 20.9 13.1 22.6 23.7 23.0 23.0 23.0 23.7 23.0 23.7 23.0 23.7 23.0 23.7 23.0 23.0		1.89	31.5	12.7		45.3	15.97	3.96	81.5
45.9 14.2 3.3 58.7 18.25 5.17 45.3 16.4 4.1 73.8 5.64 5.84 57.0 17.2 4.6 82.0 21.68 7.29 63.0 16.2 5.1 90.7 22.82 8.06 75.8 20.0 6.2 109.3 25.10 9.78 80.9 23.6 17.4 129.6 13.7 13.6 105 23.6 10 175 151.6 29.66 13.7 139 27.2 115 201 175 13.7 150 13.8 29.0 13.1 22.6 170 20.9 14.8 257		2.7	9.00	9.5		5.5	17.11	4.55	93.2
51.3 16.3 4.1 73.9 19.40 5.84 57.0 17.2 4.6 82.0 21.68 7.29 63.0 18.2 5.1 90.7 22.85 8.09 75.6 20.0 6.2 109.3 25.10 9.78 89.9 21.8 7.4 129.6 27.8 11.6 105 22.5 10.0 175 29.66 13.7 139 27.2 11.5 20.1 15.1 20.6 13.7 150 27.2 11.5 20.1 17.8 20.1 17.8 170 20.9 13.1 22.6 13.7 22.6 170 20.9 14.8 25.6 13.7		2.79	7 9			200	18.25	5.17	2
57.0 17.2 4.6 82.0 21.68 7.29 63.0 18.2 5.1 90.7 22.68 7.29 75.6 20.0 6.2 109.3 25.10 9.78 90.7 22.16 9.78 11.6 9.78 105 23.6 10.3 27.3 11.6 139 27.2 11.5 201 13.7 158 29.0 13.1 22.8 158 29.0 13.1 22.8 159 20.9 13.8 257		3.13	51.3	16.3		2.8.5	20.54	0. 6 4. 6.	25
97.0 1 7.2 46 92.0 21.68 7.29 63.0 15.8 7.29 63.0 18.2 5.1 90.7 22.82 8.08 75.8 20.0 6.2 100.7 22.82 8.08 10.8 21.8 7.4 122.6 27.38 11.6 13.7 13.8 22.0 13.1 22.8 13.8 23.0 13.1 22.8 13.8 23.0 13.1 22.8 13.8 23.0 13.1 22.8 13.8 23.0 14.8 25.7	1-	3.40		1				3	3
75.8 20.0 6.2 105.3 25.0 9.0 99.9 21.8 7.4 129.6 27.38 11.6 105 23.6 8.7 151.6 29.66 13.7 139 27.2 11.5 201 15.6 13.7 158 29.0 13.1 226 13.7 178 30.9 14.8 257		3.86	97.0	18.2	9.5	6 2.0	21.68	7.29	2 ;
88.9 21.8 7.4 129.6 27.38 11.6 105 23.6 8.7 151.6 29.66 13.7 139 27.2 11.5 201 13.7 13.7 158 29.0 13.1 226 13.7 23.6 178 30.9 14.8 257 23.7		4.67	75.8	20.0	6.2	109.3	25.10	87.6	<u> </u>
122 254 100 175 2900 13.7 151.9 29.00 13.7 151.9 29.0 13.1 226 17.8 29.0 13.1 226 17.9 20.0 13.1 226 17.9 20.0 13.1 22.0 14.8 25.7 17.0 20.0 14.8 25.7 17.0 20.0 14.8 25.7 17.0 20.0 14.8 25.7 17.0 20.0 14.8 25.7 17.0 20.0 14.8 25.7 17.0 20.0 14.8 25.7 17.0 20.0 14.8 25.7 17.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2		5.56	8 5 8 5	93.8	4.0	129.6	27.38	9.1	234
139 27.2 10.0 139 27.2 11.5 178 30.9 13.1	+	300	3	63.0	20	131.6	29.62	13.7	274
29.0		7.56		25.4	0.0	175			
30.9 14.8	_	88		29.0	- E	202			
		11.15		30.9	14.8	257			

Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior surface. Any factor of safety must be estimated from the local conditions and the requirements of each particular installation. It is recommended that for most commercial design purposes a safety factor of 15 to 20% be added to the values in the tables.—see page 3-5.

ING. SOLL-BAND CAMERON HYDRAULIC DATA

Friction of Water New Steel Pipe (Continued) (Based on Darcy's Formula) 2 Inch

Steel	dia	Head loss ft per	# PD	.19/ 172.	.357	.559	.675	1.20	1.53		2.3	3.25	3.77	4.33	4.93	6.59	2 · · ·	13.0	15.6	18.4	23.55	28.3	33.1	36.1	40.3	49.5	59.8	9.0	95.6			7 9	156	174	192				
Schedule 16US	687 inside d	Velocity head	= 8	0.00	910	026	.032	8.8	104		128	C 2	516	.251	288	392	512	799	2967	1.15	.35	96.	30.6	2.31	2.59	3.20				750		8 6 9 7 9 7 9 7	10.36	11.54	12.79				
Sched	9	Velocity ft per	Sec	861	5	8	1.44	207	2.30	3	2.87	5. 50 5. 50 5. 50	3.73	4.02	4.31	5.02	5.74	7.18	7.89	19.8	8 9	20.00	11 40	12.20	12.92	13.64 14.35	15 79	17.22	18.66	20.10		22.97	25.84	27.27	28.71				
2011 00	dia	He ad 10 \$ \$ 11 per	ш В	- £	182	285	.343	629	000		9:1	29	8	2.16	2.46	3.28	5.23	27	7.70	9.09	10.59	13.9	4.6.0	7.7	19.0	22.0	20.2	34.5	40.3	53.3		60.5 5	76.1	94.6	93.6	113	£ :	2:	-0.
Constitution of the second	939" inside d	Velocity	=	85	5 5	5	20.	3 8	88	3	6.0	3 =	2	7	71.	2	5, 5	9	95	99	2.3	8.8		1.27	1.49	œ. æ.				3.6 1.4		7.4	9	9.9	7.3	8.9	90.	2.4	
	6	Velocity ft per	Sec		92	8	1.09	3.5	1.74	8	2.12	2.30	283	6 8	3.26	3.80	5.05	5.43	5.98	6.52	90.7	8.15	03 0	9.03	9.78	10.3 10.9	12.0	13.0	14.1	15.2		17.4 18.5	9	20.6	21.7	23.9	6.98 88.88	58.2	
2	dia	Head loss it per	8	102	134	500	.252	461	586	3	976	1.05	1.37	1.57	1.62	2.38	3.06	7.00	5.58	6.58	7.66	10.1	;	12.8	14.3	15.9	21.0	24.9	28.1	33.6		4 43.5	54.8	6.09	67.3	1.19	8.5	2 5	272
21661	067" inside d	Velocity	=	88	288	015	014	028	939	0.50	057	88	8	Ξ	128	174	227	355	430	511	99	799	8	200	1.5	8.2	1.73	2.05	2.40	3.20	2	3.64	9	5.13	9.68	6.88	8 18	96	-
Standard w	2.0	Velocity ft per	296	478 574	699	98	956	3.5	153	31.1	161	2 8	2.49	5.68	2.87	3.35	3.82	4.78	5.26	5.74	6.21	7.17	3 6 6	8 13	9 9	80.6 80.6	10.52	11.5	12.4	13.4		15.3	17.2	18.2	19.1	21.0	52.9	24.9	•
	لــــــــــــــــــــــــــــــــــــ	U.S.	Ē	တ လ	~ 0	o 07	2:	<u> </u>	9 5	2	23	2 2	8	88	8	જ	\$ 4	38	5	8	9	2.2	8	2 %	8	88	95	202	130	2 2	3	<u>8</u> 5	8	8	900	520	240	200	200

Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior surface. Any factor of safety must be estimated from the local conditions and the requirements of each particular installation. It is recommended that for most commercial design purposes a safety factor of 15 to 20% be added to the values in the tables—see page 3-5.

Friction of Water New Steel Pipe (Continued) (Based on Darcy's Formula)

																															٠															
-steel	e ib			e d	8	=======================================	-22	.305	Ş.	31C.	.634	767	25.5	2.		7 5	208	500	3.32	1	2 4	5.72	8	7.67	8.75	8.80	= :	13.6		7.61	21.6	25.2	2	33.3	37.8	47.5	52.8		70.3	13.4	97.6	2	129	175	. S. S.	354
Schedule 160	2.125" inside dia		Velocity	head		80	0.013	910.	88	3	2	50.5	6.6	88	٤	3 7	156	53	.257	318	384	457	537	770	714	833		25	. 33	2.5	83	2.15	68.7	2.88	3.63	4.12	4.59	80.5	6.15	7.32	6 20	DE DE	11 43	38	22	75
Sct	2		Velocity	t per		724	S. S.	38	1.45		20.		2.17	2.35	2.53	2.71	3.17	3.62	4.07	4.52	4.98	5.43	8 5	3	6.79	7.24	8.14	8.59	20.0	9.95	10.86	12.67		13.57	15.38	16.28	17.19	18.09	19.90	21.71	25.33		27.14	36.36	40.71	45.23
-sch 80	dia	Head		# 60 E		6:	-	28	.332	=		280	.69	98	518.	8.	1.33	2.5		2.59	3.10	3.65	9 2		5.58	7 6	7.89	8.76	9.66	11.6	13.7	19.5		23.0	26.9	30.1	33.4	36.9	7	52.7	7.2		91.6		191	223
Extra strong steel	323" inside		Velocity	nead ==	;	5 8	5	0	8	8	8	8	8	g	0.	8	= ;	<u> </u>		55	.27	ş	3 4		2,5	9	22	8	68	8	8,5	2.	3.0	2.5	5.6	6.6	7,	3.5	4 n	. 0	20	1	0.00	_	_	_
Extra	2		Velocity	8ec	ā	92	6	90.	<u></u>	1.36	1.51	1.67	1.82	18.1	2.12	2.27	200	9. 6. 3. 4.		3.79	0 7	4.92	5.30	18	9 9	6.43	6.81	2.	7.57		9.6	10.6		12.1	12.9	14.4		15.1	79.4	19.7	21.2	33.7	26.5	30.3	- 6	
-sch 40	dia	Head	\$ E	8	67.0	6		.195	.247	305	.369	.438	593		679	200	1.26	1.57			2 60	3.13	3.60	4.10	9	5.20	5.80	2	2.08	5 5	=	13.5	15.5	17.5	20.0	7.5		32.0	38.5	45.0	52.3	59.A	90.0	3 6	2 2	
Standard wt steel	469" inside		head	£	500	20	010	4.0	5	.023	950	5 6	2.5		S 8	980	112	.141	72.5	5.7	251	.295	.342	393	447	Š.	0 6 0 6		698	8	- - -	1.37	1.57	6.79	2 20	2.52	95.0	2 8	70.	4.72	5.47	28	8.55	· -		1
Stands		Velocie	# per	Sec	.536	.670	408	50.0	ă.	5	47.	7	1.74		20.0	2.35	2.68	3.02	3.35	3.69	4.02	8.5	20	5.03	98.	2.5	6.37		6.70	8.04	8.71	83.5	10.05		15.1	12.7	13.4	7.7	16.1	17.4	9		23.5			1
	Flow	S -	ber	Ē	80	2 \$	2 7	9	: [8 8	38	7	92	ę	88	S.	우 :	£	S	8	8	8 5	2	75	8 8	8 8	88	1	3 5	120	99	2	200	3 5	99	<u>6</u>	۶	220	550	3 8	3	_	8 8			

Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior surface. Any factor of safety must be estimated from the local conditions and the requirements of each particular installation. It is recommended that for most commercial design purposes a safety factor of 15 to 20% be added to the values in the tables—see page 3-5.

ENGINEERS

SHEET 1 OF 2

Grandwater Extraction + Treatment System

-Red Stone Arsenal, Alabama Air Emissions

DESIGNED BY__/WA

DATE 2/15/4

DATE

CHECKED BY

TCE Mass Flow rate in the Off-gas:

M= Qw CTCE; E

where

Qw = system flowrate (gpm) = 30 gpm CTCE;= incluent TCE concentration in groundwater (mg/L) = 2,500 mg/L

E = removal efficiency

MTCE = Mass flowrate of TCE in off-gas

MTCE = 30gal x 2,500mg x 3,785L x 19 x 16 x E = 30 gal x 2,500 kg x 3.785L x 2-21×10-9 16 x E

Based on North East Environmental modeling, expected removal refliciency for model 2331-P for 2,500 mg/L influent TCE concentration = 30 x 2500 x 3.785 x 2.21 x10-9 x 0.999096

= 0.00063 16/min x 60 min

= 0.0375 16/hr MTCE

FEB 16 '96 12:19

- Air Velocity @ Duct 300ft3 = 1530 ft min STack Discharge Temp- 604 Min
 TEN -1 - Min
 - TEREmoval Efficiency 99,90967.

m No. E-6 Rev.

7039343315

#m No. E-6 Rev. 12-89

ALCULATION:

6/6

low profile air strippers **System Performance Estimate**

Client & Proposal Information:

ICF Kaiser Site ID: Red Stone Arsenal, AL Proposal #296712

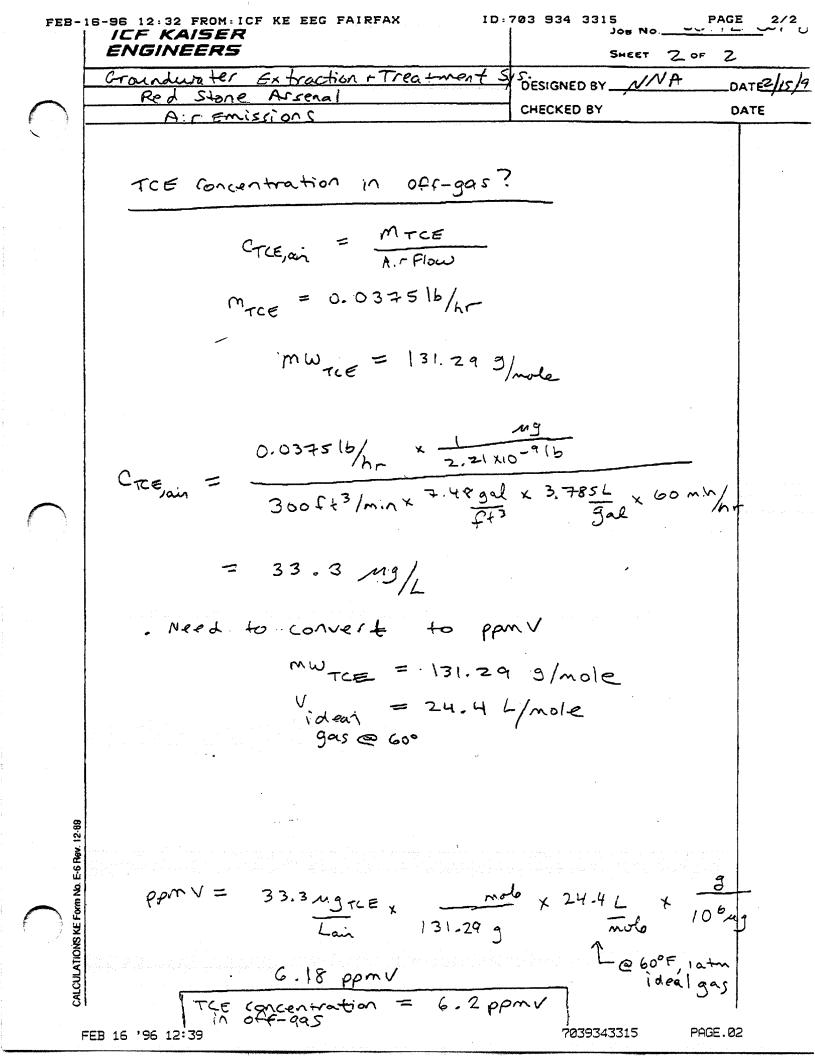
Model chosen: 2300 Water Flow Rate: 30.0 gpm Air Flow Rate: 300 cfm Water Temp: 60.0 °F Air temp: AW Ratio: 50.0 °F 74.8 Safety Factor None

				•	
Contaminant	Untreated Influent Effluent Target	Model 2311 Effluent Water Air(lbs/hr) % removal	Model 2321 Effluent Water Air(lbs/hr) % removal	Model 2331 Effluent Water Air(lbs/hr) % removal	Model 2341 Effluent Water Air(lbs/hr) % removal
1,1-Dichloroethylene	3 ppb 2 ppb	<1 ppb 0.000043 95.7658%	<1 ppb 0,000045 99,8207%	<1 ppb 0.000045 99.9924%	<1 ppb 0.000045 99.9997%
Toluene	4 ppb 2 ppb	1 ppb 0.000045 84.6453%	<1 ppb 0.000059 97.5423%	<1 ppb 0.000060 99.6380%	<1 ppb 0.000060 99.9444%
Trichloroethylene	2500 ppb 5 ppb	242 ppb 0.033885 90.3323%	24 ppb 0.0371 56 99.0654%	3 ppb 0.037471 99.9096%	<1 ppb 0.037513 99.9913%

0.37 ppmv @ 300 CFM

This report has been generated by ShallowTray Modeler software version 2.0.6. This software is designed to assist a skilled operator in predicting the performance of a ShallowTray air stripping system. North East Environmental Products, Inc. is not responsible for incidental or consequential damages resulting from the improper operation of either the software or the air stripping equipment. Report generated: 2/8/96

© Copyright 1995 North East Environmental Products, Inc. - 17 Technology Drive, West Lebanon, NH 03784 Voice: 603-298-7061 FAX: 603-298-7063 - All Rights Reserved.


ICF Kasser Engineers, Inc. 9300 Loe Highway Fairfax, VA 22031-1207 703/934-3300 Fax 703/934-9740

FAX

Date:	2/16/96
Number of pages in- cluding cover sheet:	2

To:	Nova	From:	Non
Fax Phone:		Fax Phone:	
Phone:		Phone:	

lem erks:			•
Urgent	For your review	- Reply ASAP	Please comment
Nona			
	/	,	. ***
	Please repr	ace page	: 20f2
	of Air	Enimissions	calo.
	w/ A	sach and	Cares
	10/2000	ached pag	je.
		Than	hs
	••	Nor	_
	- 7 ·		
7	7.5 value (o.2ppmv o	of TCE in offgas
en e	indiana medos	to addled to	o. Table 3-2

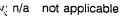
APPENDIX C MAJOR EQUIPMENT SPECIFICATIONS

TABLE C-1 LIST OF MAJOR EQUIPMENT¹ TO BE SUPPLIED BY EQUIPMENT VENDOR² INTERIM GROUNDWATER REMEDIATION SYSTEM INSTALLATION REDSTONE ARSENAL, ALABAMA

TAG NO. (P&ID)	QTY	EQUIPMENT DESCRIPTION	SPECIFICATIONS	MANUFACTURER/ MODEL NUMBER
P-100	1	Stainless steel, environmental, submersible pump	4-inch diameter, 1 hp, 3450 rpm, 1/60/230V AC, rated for 15 gpm at 180 ft TDH, with teflon seals, 4-inch motor leads, and starting components within pump motor assembly.	Grundfos Model 16E9
P-200	1	Stainless steel, environmental, submersible pump	4-inch diameter, 1/2 hp, 3450 rpm, 1/60/230V AC, rated for 5 gpm at 180 ft TDH, with teflon seals, 4-inch motor leads, and starting components within pump motor assembly.	Grundfos Model 5E12
Equipment Shed	1	Pre-engineered wood/aluminum shed 10' x 15' with installed remediation equipment	One set of double doors with heating and lighting. Must be designed to meet building codes for installation in Redstone Arsenal, Alabama.	various
PCP	1	Process Control Panel to be located inside the equipment shed	Control System with Autodial Alarm Telemetry and Lightning Protection System. Panel shall be equipped with illuminated H.O.A. switches for all motors and electrically actuated valves and alarm indicators. To be supplied with power distribution panel, circuit breakers and single-point power source and telephone service connectors.	various

¹Piping, fittings, valves and other components associated with the construction of the remediation system are excluded from this list. The vendor is responsible for assuring that the equipment required to meet the performance goals discussed in the Work Plan text and as depicted in the design drawings is supplied and constructed whether or not the equipment is listed here.

²Vendor shall verify the appropriateness of the specified equipment to meet the performance requirements set forth in the remedial action plan. Should alternate equipment be more economically or appropriately employed to accomplish the remedial objective, the vendor shall obtain approval of any such substitutions from the Engineer prior to implementation.


TABLE C-1 (CONTINUED) LIST OF MAJOR EQUIPMENT TO BE SUPPLIED BY EQUIPMENT VENDOR INTERIM GROUNDWATER REMEDIATION SYSTEM INSTALLATION REDSTONE ARSENAL, ALABAMA

TAG NO. (P&ID)	any	EQUIPMENT DESCRIPTION	SPECIFICATIONS	MANUFACTURER/ MODEL NUMBER
AS-100	1	Low profile air stripper	Skid Mounted air stripper with aeration trays, aerator blower, 6-inch air discharge duct, and integral sump tank (100 gallons minimum) in polyethylene construction. Available connection to discharge stack. Must meet contaminant removal parameters set in work plan. Power requirements - 1/60/230 VAC, 3 wire plus ground, 20 amp service. 6'H x 8'L x 4.4'W.	Northeast Environmental Products, Inc. Model 2331-P Shallow Tray
B-100	1	Air Stripper Blower	Operating flow of 300 cfm at 14" static water column pressure. Powered by 1/60/230 Volt, 3 HP, TEFC motors supplied with blower start/stop panel.	Supplied With Air Stripper
S-100	1	Air blower Silencer, Ambient Air	Inlet air blower silencer	Supplied With Air Stripper
BF-100	1	Blower Filter	Inlet Filter to aerator blower	Supplied With Air Stripper
PI-130	1	Vapor Pressure Indicator	Air Stripper Blower Effluent Pressure in inches of H ₂ O	Supplied with Air Stripper
PSH-100	1	High Pressure Sensor	Vapor Pressure Sensor in inches of H ₂ O	Supplied with Air Stripper
PAH-100	1	High Pressure Alarm	Low vapor pressure alarm.	Supplied with Air Stripper
FSL-100	1	Low Flow Sensor	Vapor Flow in cfm	Supplied with Air Stripper
FAL-100	1	Low Flow Alarm	Low flow alarm with local and remote alarm notification capabilities	Supplied With PCP
HS-050 HS-075	2	Groundwater extraction pumps disconnect switch	Manual override switch with Hand-Off- Auto settings	Supplied With PCP
HS-100	1	Hand switch for discharge transfer pump	Manual override switches with Hand- Off-Auto settings	To be supplied with control panel
HS-150	1	Hand switch for blower	Manual override switches with Hand- Off-Auto settings	Supplied with Air Stripper

n/a not applicable

TABLE C-1 (CONTINUED) LIST OF MAJOR EQUIPMENT TO BE SUPPLIED BY EQUIPMENT VENDOR INTERIM GROUNDWATER REMEDIATION SYSTEM INSTALLATION REDSTONE ARSENAL, ALABAMA

TAG NO. (PAID)	QTY	FOUPMENT DESCRIPTION	SPECIFICATIONS	MANUFACTURER/ MODEL NUMBER
LSHL-050 LSHL-075	2	High-Low level sensors for extraction wells EX-01 and EX-02	High/low conductivity-based level sensing probes with intrinsically safe control signal	Warrick Controls
PI-050 PI-075 PI-100 PI-110 PI-120 PI-200 PI-250	7	Pressure gauge	0-100 psi of water pressure indicator, liquid filled, painted steel case ± 2%	various
FI-050 FI-075	4	Rotameter	Rotameter gauge readout of 0.5 - 50 gpm of water flow	various
FI-100/FQI-100 FI-200/FQI-200	2	Flow Meter	Flow quantity totalizer/indicator in cast iron construction rated for 3 to 200 gpm, helical vane inferential meter. Supply with companion flanges for NPT connection.	Kent Meters, Inc. T-3000 CI
Ti-100 Ti-200	2	Temperature Gauge	Temperature indicator, range of -20 to 120°F, painted steel case	various
F-100	1	Particulate Filter	Single carbon steel filter housing unit, 2-inch NPT with one pleated bag filter and 6 spare pleated bag filters.	Rosedale Products, inc. Model 8
LSHL-100 LSHH-100	1	High-Low and High-High float level switch for air stripper sump tank	Reed Float Switch w/ Epoxy Coated Die Cast Aluminum Housing.	Warrick Series 16 Supplied with Air Stripper
LAHH-100	1	Level High-High Alarm	Local and remote autodial alarm of high-high water level in air stripper sump tank	Supplied with PCP
P-300	1	Centrifugal Transfer Pump	Cast iron bronze fitted centrifugal pump with 5 HP, 3600 rpm, 3/60/230 VAC, TEFC motor capable of 50 gpm @ 144 feet TDH, 5.98" impeller diameter, T.21 Viton mechanical seal, and 1" x 1.5" NPT connections.	Price Pump Co. Model A100- 1"x1.5"x6"

Redi-Flo Environmental Submersible Pumps

16E

Submittal Data

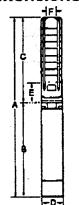
3450 RPM

60 Cycle

JOB or CUSTOMER:	
ENGINEER:	
CONTRACTOR:	· .

SUBMITTED BY: DATE:

APPROVED BY: DATE:


APPROVED BY: DATE:

ORDER NO.: DATE:

COECIEICATION DEF:

•	J SP1	ECIFICATION REF.						
"QUANTITY	FAGNO)	MODEL NO.	16.	GPM	FEET	VOLT,	PHYSE.	COMMENT
	-	 						
	 		· · · · · · · · ·					

Dimensions

Technical Data

FLOW RANGE: 10 to 20 US GPM

MOTORS: Grundfos MS402E Environmental Submersible Motor (Standard)

Maximum Operating Temperature: 104°F (40°C)

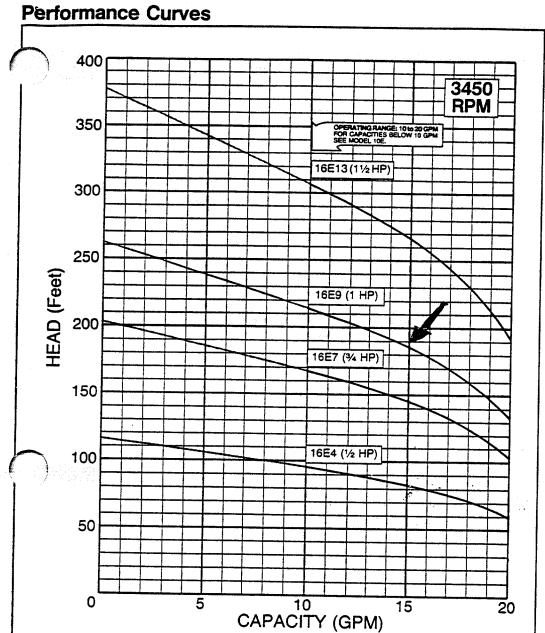
Maximum Operating Pressure: 220 PSI

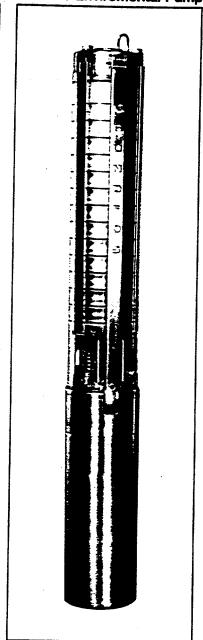
Maximum Number of Starts Per Hour: 100

Minimum Recommended Flow Past Motor: 0.25 ft/sec (NOTE: Franklin Pollution Recovery motor is optional.)

DISCHARGE SIZE: 11/4" NPT

PUMP END CONSTRUCTION MATERIALS: Stainless Steel and Teflon®


INSTALLATION: Unit to be installed vertically for submerged operation.


Electrical Data, Dimensions, and Weights 10

				DIMENSIONS (In Inches)								
PUMP		мо	TOR_		OVERALL	MOTOR LENGTH	PUMP END LENGTH	MAX. DIA.	INLET	DISCH. PIPE SIZE (NPT)	WEIGHT	SHIP. WEIGHT
TYPE	HP	SF	PH	VOLTS	A	80	C	D	E	-	(LBS.)®	(LBS.)Ø
\$16E4:	14		<u> </u>	* 230*	2014	101%	FX 9 74		29/2	المنافقة المسادرة		
16E7	3/4	1.50	1	230	23 1/4	11 %	11%	331/22	. 314	114	27	28
A (GEO	194			230 1	25 Yes	7112	人位务					
16E13	1 1/2	1.30	1	230	307/10	13 %e	167/6	381/32	314	11/4	33	34

① Data for Grundfos MS402E motors. ② Does not include motor leads.

Redi-Flo Enviromental Pump

Materials of Construction

REDI-FLO PUMP END	
Check alve Housing 1882	304 Stainles Steel Tolk Steel
Check Valve	304 Stainless Steel
建作品间间的	* * Codeso o canon *
Diffuser Chamber	304 Stainless Steel
anniele Ceather and a	THE TENED OF THE PROPERTY OF
Impeller	304 Stainless Steel
Suction interesting con-	は、大学の自然ののできます。
Inlet Screen	304 Stainless Steel
GENERAL SELECTION OF THE SECOND SECOND SECOND SECOND SECOND SELECTION OF THE SECOND SE	SECTION OF THE PROPERTY OF THE PARTY OF
Coupling	329/420/431 Stainless Steel
COMPANY OF THE PROPERTY.	是这些的自己的的。 1000年的自己的自己的自己的自己的自己的自己的自己的自己的自己的自己的自己的自己的自己的
Guard	304 Stainless Steel
OG INCUCAIS	THE STATE OF THE PARTY OF THE P
Intermediate Bearings	Teflon®

NOTE: Specifications are	subject to	change without notice
THE POSTIONAL CONTRACTOR	Sanject to	change williout hotice.

GRUNDFOS ENVIRONM	and the same of th
Nema Too	304 Stalutes Silving
Studs & Fasteners	304 Stainless Steel
WIDE TO THE PROPERTY OF THE PARTY OF THE PAR	316Sanessses
Sand Slinger	Viton®
SMINE SOURCE SOURCE	
Diaphragm	Viton®
SECRECISIO	SUA SAMESS CO
Fill Plug Screw	304 Stainless Steel
FIRE DEALES HE STATE OF THE	ALGIICUT STORY

GRUNDFOS ENVIRONMENTA	AL MOTOR LEADS
Connector Sleeve Connector Potting	304 Stainless Stee
L	Scotch Cast #4® Epoxy w/Viton® Cap
ACCURE OF FILLER BY	AVIOR STEELS TO A SECOND
Lead Insulation	Teflon®

Redi-Flo4 Environmental Submersible Pumps

Submittal Data

3450 RPM

60 Hertz

Data 3430 RPIV

.

SUBMITTED BY: DATE:

APPROVED BY: DATE:

ORDER NO.: DATE:

SPECIFICATION REF.:

JOB or CUSTOMER:

ENGINEER:

CONTRACTOR:

O' CON TOTAL I.									
QUANTITY	TAG NO.	MODEL NO.	GPM	FEET	VOLT	PHASE	COMMENT		

Dimensions

Technical Data

FLOW RANGE: 1.2 to 7 US GPM

MOTORS: Grundfos MS402E Environmental Submersible Motor (Standard)

Maximum Operating Temperature: 104°F (40°C)

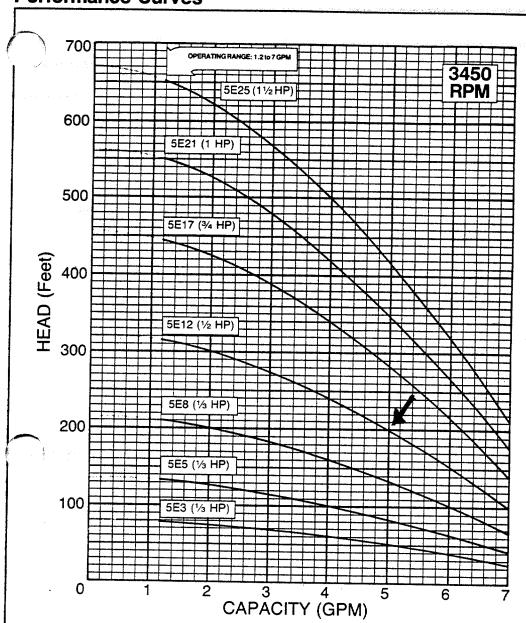
Maximum Operating Pressure: 220 PSI Maximum Number of Starts Per Hour: 100

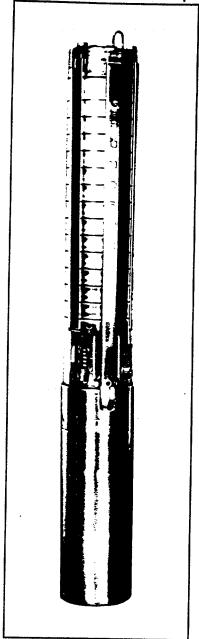
Minimum Recommended Flow Past Motor: 0.25 ft/sec (NOTE: Franklin Pollution Recovery motor is optional.)

DISCHARGE SIZE: 1" NPT

PUMP END CONSTRUCTION MATERIALS: Stainless Steel and Teflon®

INSTALLATION: Unit to be installed vertically for submerged operation.


Electrical Data, Dimensions, and Weights ①


	PUMP		MO	TOR		OVERALL LENGTH	MOTOR LENGTH	PUMP END LENGTH	MAX. DIA.	INLET	DISCH. PIPE SIZE (NPT)	NET WEIGHT	SHIP. WEIGHT
	TYPE	HP	SF	PH	VOLTS	Α	BÛ	С	Ď	E	F	(LBS.)@	(LBS.)@
L	5E3	√1/3	1.75	1	230	18%6	10	8.9/16	3 31/32	31/4	. 1	23	25
L	5E5	1/3	1.75	1	230	20 5/16	10	105/16	3 31/32	3 1/4	1	24	26
L	5E8	1/3	1.75	1	230	223/4	10	123/4	3 31/32	31/4	1	26	28
•	5E12	1/2	1.60	1	230	26 ¹³ /16	10 ¹³ /16	16	3 31/32	3 1/4	1	28	29
/	5E17	3/4	1.50	1	230	31 7/16	113/8	203/16	3 31/32	31/4	. 1	31	32
	5E21	1	1.40	1	230	35 7/16	12	23 7/16	3 31/32	3 1/4	1	33	35
Ľ	5E25	1 1/2	1.30	1	230	40 5/16	13 ⁹ /16	263/4	3 31/32	3 1/4	1	35	37

① Data for Grundfos MS402E motors. ② Does not include motor leads.

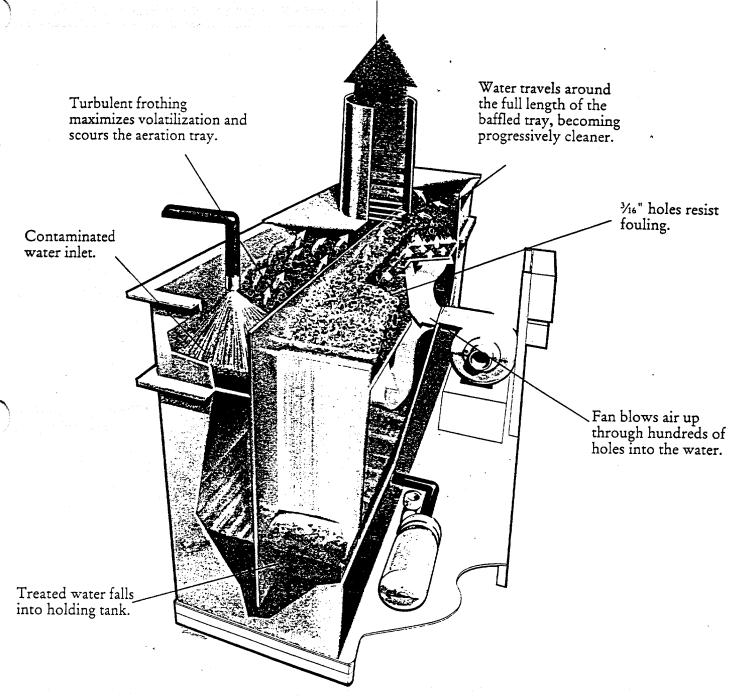
Performance Curves

Redi-Flo4 Environmental Pump

Materials of Construction

REDI-FLO4 PUMP END	
Check Valve Housing Check Valve Check Valve Seat Diffuser Chamber Impeller Seal Ring Impeller Suction Interconnector Inlet Screen Pump Shaft Coupling Guard Ing Inducer Intermediate Bearings	304 Stainless Steel 304 Stainless Steel 304 Stainless Steel & Teflon® 304 Stainless Steel Teflon® 304 Stainless Steel Teflon®

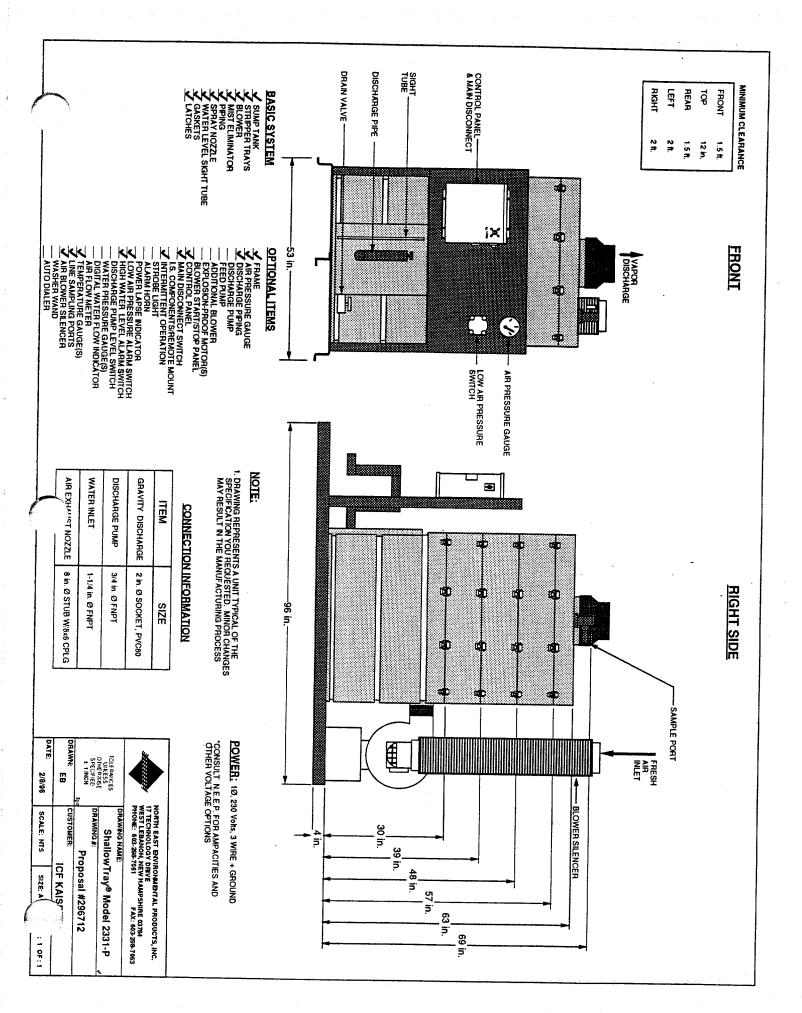
NOTE: Specifications are subject to change without notice.


GRUNDFOS ENVIRONMENTAL MOTOR					
Nema Top Studs & Fasteners Nuts Sand Slinger Shaft Extension Diaphragm Stator Housing Fill Plug Screw Fill Plug Washer	304 Stainless Steel 304 Stainless Steel 316 Stainless Steel Viton® 431 Stainless Steel Viton® 304 Stainless Steel 304 Stainless Steel Teflon®				

GRUNDFOS ENVIRONMENTAL MOTOR LEADS						
Connector Sleeve Connector Potting	304 Stainless Steel Scotch Cast #4® Epoxy					
Connector Plug Lead Insulation	w/Viton® Cap Viton® Teflon®					

The Shallow Tray Process

Air is vented to the atmosphere or to vapor phase treatment of choice.


AS-100

This illustration is representative of the ShallowTray. Model 2611.
Protected under U.S. Patent Nos. 5,045,215 and 5,240,595. Other International Patents Pending.

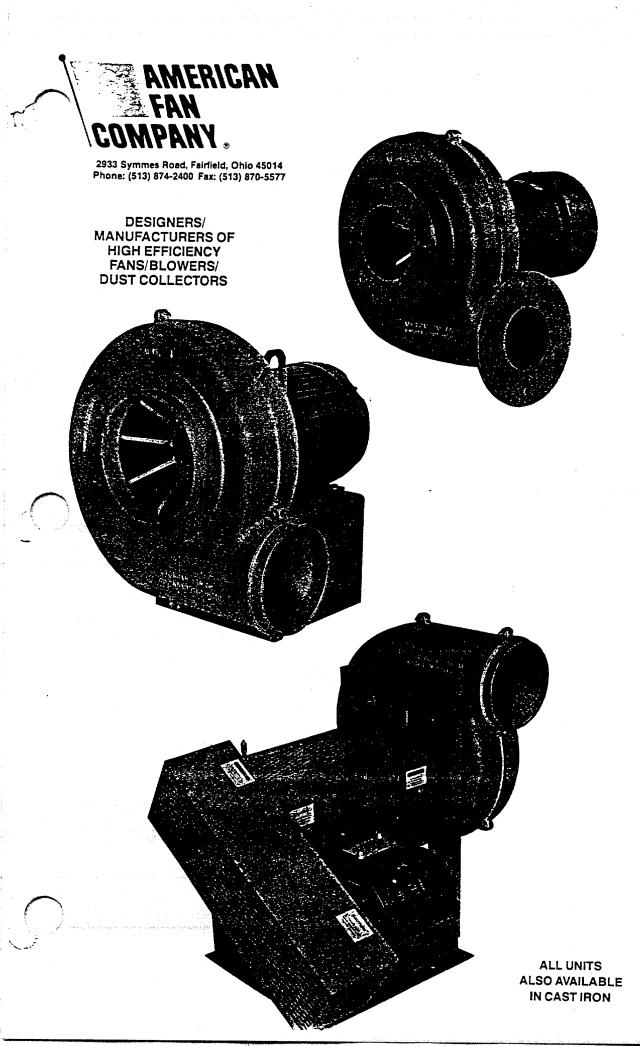
Photo on front cover: top view of 2300 Series aeration tray in action. Photo on back cover: cross section of a ShallowTray in action. ShallowTray is a registered trademark of North East Environmental Products, Inc. © 1994 North East Environmental Products, Inc. Our policy is one of continual improvement and we reserve the right to alter any detail of our products a very time mithous notice.

Printed on recycled paper

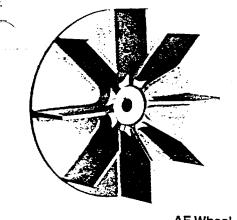
Shallow Itay low profile air strippers System Performance Estimate

Client & Proposal Information:

ICF Kaiser Site ID: Red Stone Arsenal, AL Proposal #296712 Model chosen: 2300
Water Flow Rate: 30.0 gpm
Air Flow Rate: 300 cfm
Water Temp: 60.0 °F
Air temp: 50.0 °F
AW Ratio: 74.8
Safety Factor None


					140116
Contaminant	Untreated Influent Effluent Target	Model 2311 Effluent Water Air(lbs/hr) % removal	Model 2321 Effluent Water Air(lbs/hr) % removal	Model 2331 Effluent Water Air(lbs/hr) % removal	Model 2341 Effluent Water Air(lbs/hr) % removal
1,1-Dichloroethylene	3 ppb 2 ppb	<1 ppb 0.000043 95.7658%	<1 ppb 0.000045 99.8207%	<1 ppb 0.000045 99.9924%	<1 ppb 0.000045 99.9997%
Toluene	4 ppb 2 ppb	1 ppb 0.000045 84.6453%	<1 ppb 0.000059 97.6423%	<1 ppb 0.000060 99.6380%	<1 ppb 0.000060 99.9444%
Trichloroethylene	2500 ppb 5 ppb	242 ppb 0.033885 90.3323%	24 ppb 0.037156 99.0654%	3 ppb 0.037471 99.9096%	<1 ppb 0.037513 99.9913%
) · · · · · · · · · · · · · · · · · · ·				\$ ************************************) 53.3313

0.37 ppmv@300 CFM


This report has been generated by ShallowTray Modeler software version 2.0.6. This software is designed to assist a skilled operator in predicting the performance of a ShallowTray air stripping system. North East Environmental Products, Inc. is not responsible for incidental or consequential damages resulting from the improper operation of either the software or the air stripping equipment. Report generated: 2/8/96

© Copyright 1995 North East Environmental Products, Inc. • 17 Technology Drive, West Lebanon, NH 03784 Voice: 603-298-7061 FAX: 603-298-7063 • All Rights Reserved.

PAGE 10F3

FEATURES

AF Wheel

Model AF teatures arrugged lightweight and fustproof cast aluminum housing and wheel making it ideal for demanding industrial applications. Model AF is available in direct or belt drive with a variety of accessories to meet your requirements.

Capacity selections are available up to 3600 CFM and pressure selections up to 20' SP w.g.

- Split nousing for maintenance ease.
 Level (a.b. pipe sizes on interest and outlet.
 Non-sparking cast aluminum wheel and housing. and housing
- Assortment of wheel sizes to pinpoint your performance requirements. Available in arrangements

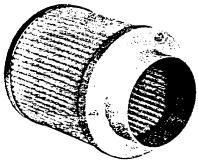
THE OWNER OF

- Reliability

 Wheels both statically and dynamically balanced

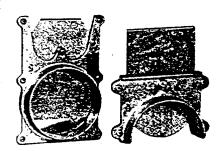
 Rustproof
- ILOWINITE RESERVE

APPLICATIONS


- Rubber processing Food processing Chemical processing
- J Fume control
- Dust control

- Combustion air for Incinerators, ovens, fur-naces, klins and dryers
- Cooling electronic equipment; motors; gener ators and transformers
- Paperandpilitingmaenin ■ Textile machinery
- Light materials conveying
- Woodworking machinery
- Forced drying:

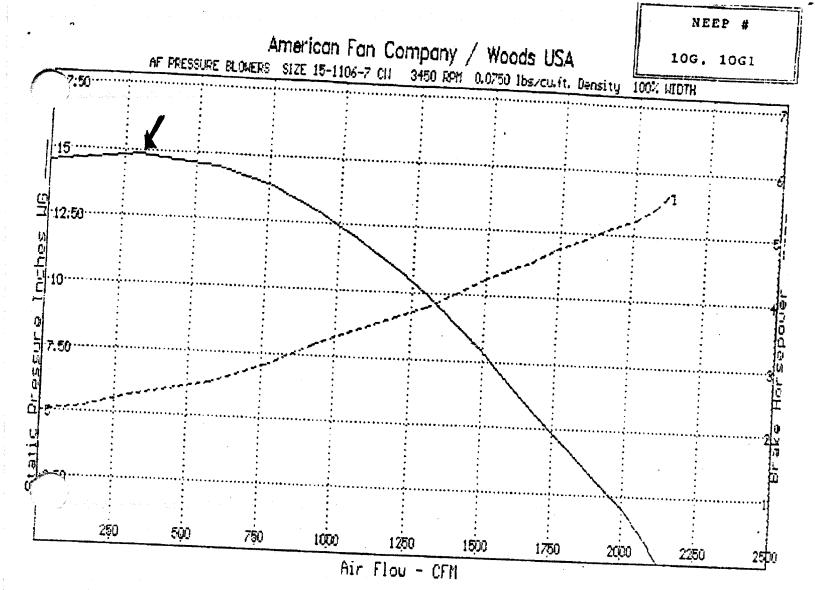
PTIONS


- let flande
- Outlet flange
-)Housing drain:
- Corrosive resistant coatings
- Inlet and/or outlet quard
- Castilion housing:
- Fabricated steel wheels
 Fabricated stainless wheels
 and housing
 Shaft seals

- Sound attenuator
- Inleviller of
- Full of half cut-off
- Heat slinger Drive guard system

INLET FILTER

Oil wetted, crimped steel wire mesh media provides 94% filtration efficiency of particulate of 10 micron or arger. Filters are cleanable and reusable.


FULL and HALF CUT-OFF

Cast aluminum housing with galvanized steel gate allows manual adjustment of CFM. Thumbscrew locks gate in place. Can be mounted on either inlet or outlet side of blower.

INLET GUARD

Expanded metal welded to collar that is bolted to inlet of blower. Provides OSHA guarding on non-ducted inlet applications while preventing foreign objects from entering blower.

Prepared For:
NORTH EAST ENVIRONMENTAL PRODUCTS
1331, EXP 1331, 2331, EXP 2331

04/07/1992

FORM 270-B 24L-050 LSHL-075

Installation

INSTALLATION OF WARRICK SERIES 27 - INTRINSICALLY SAFE SENSING CIRCUIT

This bulletin should be used by experienced personnel as a guide to the installation of the Series 27. Selection or installation of equipment should always be accomplished by competent technical assistance. We encourage you to contact Warrick or its local representative if further information is required.

IMPORTANT: BEFORE PROCEEDING TO INSTALL AND WIRE THE CONTROL, READ AND THOROUGHLY UNDERSTAND THESE INSTRUCTIONS.

When installed according to these instructions, this device provides an intrinsically safe output for interface into Class I and II, Division I, Groups A, B, C, D, E, F, and G Hazardous locations. Electrical equipment connected to associated apparatus should not exceed maximum voltage marked on product.

LOCATION: The control must be situated in a nonhazardous area where an explosive atmosphere will not exist at any time unless it is mounted in a suitable U.L. approved explosion-proof enclosure with suitable U.L. approved explosion-proof seals.

WIRING:

- 1. Intrinsically safe wiring must be kept separate from non-intrinsically safe wiring.
- 2. Intrinsically safe and non-intrinsically safe wiring may occupy the same enclosure or raceway if they are at least 2 inches (50mm) apart and separately tied down. Inside panels, field wiring terminals for intrinsically safe circuits must be separated by at least 2 inches (50mm) from nonintrinsically safe terminals.
- 3. Wire the control device(s) to the Series 27 relay as shown in the specific application wiring diagram on reverse side. A separate rigid metallic conduit should be used to enclose the conductors of the intrinsically safe control circuit.
- 4. An approved seal should be used at the point where the intrinsically safe control circuit wiring enters the hazardous area.

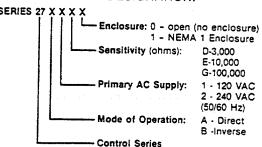
For intrinsically safe output wiring use #14 or #16 AWG type MTW or THHN wire. By using these wire types in conjunction with the following distance recommendations, you will not exceed the maximum capacitance for field wiring.

Use the following chart as a guide for maximum wire runs for differential level service (3 wire) field wiring.

Model Max. Sensitivity (K OHMS) Distance (Ft.) 27XXDO 4,000 27XXEO 900 27XXGO 100

GROUNDING: Both mounting tabs of the Series 27 provide an electrical connection for earth grounding between the control's internal solid state circuitry and the enclosure chassis. To insure proper ground-

ing, use only metal screws and lock washers when mounting this control.


One of the two ground terminals provided on the intrinsically safe output terminal strip must be connected as reference to the same conductive media presented to terminals "H" and "L" (see applicable wiring diagram on reverse side).

Terminal G1 on the supply line/load side terminal strip is a redundant system ground terminal and should be connected to the earth ground buss of the control's AC supply line feeder.

NOTE:

- 1. Intrinsically safe terminals can be connected to any non-energy generating or storing switch device such as a pushbutton, limit or float type switch or any Warrick electrode and fitting assembly.
- 2. To prevent electrical shock from supply line/load side powered connections, the Series 27 should be mounted in a tool accessible enclosure of proper NEMA rated integrity.
- For additional guidance on "Hazardous Location Installations" and "Intrinsically Safe Devices", consult ANSI/ISA standard RP 12-6 or NEC articles 500 through 516.

MODEL NUMBER DESIGNATION:

SPECIFICATIONS

CONTACT DESIGN: SPDT (1 form C), one normally open (N.O.) and one normally closed (N.C.)
CONTACT RATING: 8 Amps - 250 VAC. 8 Amps - 30 VDC.

Resistive

CONTACT LIFE: Electrical @ rated load = 100.000 cycles minimum. Mechanical = 10,000,000 cycles. ELECTRONICS MODULE: Solid state components epoxy

encapsulated in a black nylon shell. SENSITIVITY RANGE: 0-100,000 Ohms maximum specific

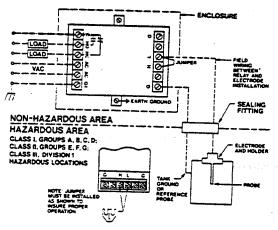
TEMPERATURE RANGE: (minus) -40 deg F. to (plus) + 150 deg F. PRIMARY AC SUPPLY LINE: A) Voltage - (120, and 240 VAC) (plus) + 10%, (minus) — 10%. B) Frequency — 50/60 Hertz. C) Power — (Relay energized) 1.7 VA.

SECONDARY CIRCUIT: Nominal 11 Volts. AC, RMS, Current: 2.3 Milliampere, RMS.

TERMINALS: Size 6 pan head screws with captivated wire clamping plate. PAGE

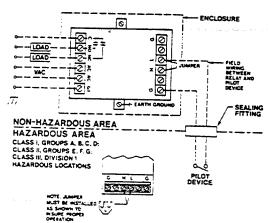
INSTALLATION OF WARRICK SERIES 27 - INTRINSICALLY SAFE SENSING CIRCUIT

SINGLE LEVEL SERVICE — CONDUCTANCE ACTUATED:


Connect incoming AC (120, 240 VAC) supply to AC terminals: Incoming earth ground to terminal G1.

Install metallic jumper between terminals H-L.

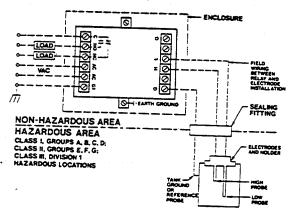
Connect terminal L to the electrode.


Terminal G must be grounded to the tank if metallic. When the tank is non-metallic, terminal G must be connected to an additional electrode of length equal to the longest electrode.

NOTE: Jumper must be installed as shown to insure proper operation. Wire contacts (C-NO) normally open and (C-NC) normally closed into load circuit as required.

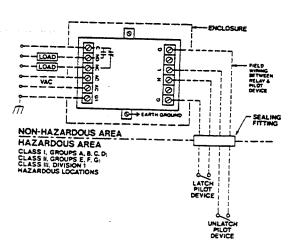
SINGLE INPUT (NON-LATCHING) - PILOT CONTACT ACTUATED:

Connect incoming AC (120, 240 VAC) supply to AC terminals: Incoming earth ground to terminal G1.
Install metallic jumper between terminals H-L.
Wire contacts (C-NO) normally open and (C-NC) normally closed into load circuits as required.
Connect the pilot contact to terminals G-L.
NOTE: Jumper must be installed as shown to insure proper operation.


DIFFERENTIAL LEVEL SERVICE — CONDUCTANCE ACTUATED:

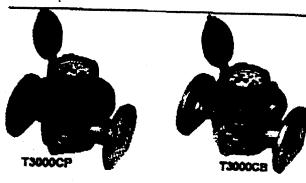
Connect incoming AC (120, 240 VAC) supply to AC terminals: Incoming earth ground to terminal G1.

Connect terminal H to high electrode and terminal L to low electrode.


Terminal G must be grounded to the tank if metallic. When the tank is non-metallic, terminal G must be connected on an additional electrode of length equal to the longest electrode.

Wire contacts (C-NO) normally open and (C-NC) normally closed into load circuit as required.

DUAL INPUT (LATCHING) - PILOT CONTACT ACTUATED:


Connect incoming AC (120, 240 VAC) supply to AC terminals: Incoming earth ground to terminal G1.
Wire contacts (C-NO) normally open and (C-NC) normally closed into load circuits as required.
Connect the latch pilot contact to terminals G-H and the unlatch pilot contact to terminals G-L.

Specification Sheet

Kent Turbine Meters Model T-3000 Bronze, Magnetic Drive, Round Flanged Ends

Sizes 1 1/2", 2" & 3"

Description

Operation. The T-3000 Turbine Meter is designed for installation where occasional low and moderate to high sustained flows are demanded. Water passes through the meter without a change in flow direction, driving a helix rotor in direct proportion to the quantity of water passing through the meter. Rotor revolutions are transferred to a register by appropriate reduction gearing and a magnetic drive.

Compliance to Standards. The T-3000 Turbine Meter complies with all performance and material requirements of the American Water Works Association Standard C-701, Class II In-Line (High-Velocity) Type, as most recently revised.

Installation. The meter must be installed in a clean pipeline, free from any foreign materials. Install the meter with direction of flow as indicated by the arrow cast in the meter case. The meter may be installed in horizontal or inclined lines. It is recommended that a Kent Plate Strainer be used to protect the turbine and help reduce the effects of turbulence.

Application. The meter is for use in POTABLE COLD WATER up to 120 ° F (50 ° C) and working pressures up to 150 psi. The meter will perform with accuracy registration of 100% ± 1 1/2% within the

Specifications

		V	
Size:	1 1/2"	z -	3"
95%-101% Accuracy GPM	2.99	2.99	4
98.5%-101.5% Accuracy GPM	4-200	4-200	5-750
Continuous Flow GPM	160	160	500
Maximum Flow GPM	200	200	750
Operating Pressure pai	150	150	150
Operating Temperature/F	120	120	120
Sweep Hand Registers			
US Gallons	100	100	100
Cubic Feet	10	10	10
m³ - Cubic Meters	1	1	1
Imperial Gallons	100	100	100
Capacity of Register			
US Gellons (millions)	100	100	100
Cubic Feet (millions)	10	10	10
m* Cubic Meters (millions)	1	4	4
Imperial Gallons (millions)	100	100	100
Register Type		ntly se to	
	reading		

Materials
Mein Cese
Top Cover Plate
Body O-Ring
Cese Bolts
Measuring Element
Rotor
Rotor Bushings
Rotor Thrust Bearing
Rotor Spindle
Undergearing
Register Lens
Register Housing and Lid
Register Can

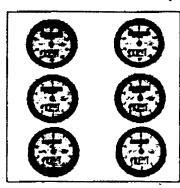
Bronze
Bronze or Polymer
Neoprene Rubber
Steinless Steel
Polyphenylene Oxide
Polypropylene
PTFE Compound
Ceramic Jewel
Tungsten Carbide
Polymostal Rusin
Tempered Glees
Synthetic Polymer or Bronze
90% Copper Alloy

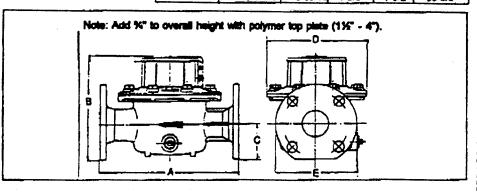
Kent Meters, Inc.
An ABB Kent Meter Division Company

Construction. The meter consists of a main case, a measuring element, a case cover and a magnetically driven register assembly. The main case is cast in bronze with raised characters showing model, size and direction of flow. The case has a throated injet. A case dowel pin is inserted for locating the top cover plate. The measuring element assembly consists of the rotor, straightening varies, accuracy regulator, spindles and gears, filters and undergeer assembly. The measuring element is attached to the underside of the cover with four stainless steel screws and washers, one insert of which is placed accentrically in the cover. The internal regulator assembly is interconnected with an external regulator shaft located on top of the cover allowing meter calibration without depressurizing the test bench or meter service. The regulator is protected by a temperproof device. The main case and cover are assembled with an O-ring gazket and stainless steel bolts. The register assembly is secured to the main case with a temperproof screw and is hinged over the inlet throat. However, the register can be rotated and locked in any 350 degree position therein.

Register. The register is contained within a 90% copper seamless can which is vacuum purged then filled with a dry nitrogen gas to eliminate condensation. The 1/4" true tempered glass lens is secured in an "L" shaped gasket, nen roll sealed to produce a permanent sealed design. To assure easy reading, the totalizer wheels are large and color coded. The applicable size, model, registration, part number and date code are printed on the calibrated dial

face. Moving clockwise during operation, the extra thin sweep hand does not interfere with meter reading, and the flow indicator will detect plumbing leaks.


Magnetic Drive. The magnetic drive design eliminates miscoupling associated with right angle drives. Torque is absorbed in the undergear assembly below the driving magnet. Consequently, the driving magnet at all flows is turning slowly, assuring magnetic coupling with the register assembly. The undergearing is protected by an encasement appropriately filtered.


Connections. The 1 1/2", 2" & 3" meters are available with 4-bott round flanged end connections. The flanged connections conform to ANSI B16.1 cast-iron pipe flange, Class 125. Both bronze and cast-iron companion flanges are available. The companion flanges are available. The companion flanges are faced, drilled and tapped with ANSI B2.1 internal taper pipe thread and conform to ANSIB16.1 cast-iron pipe flange, Class 125.

Pulsers. See Specification Sheet #LRP/HRP-T3000. LRP (2-wire) Reed Switch, 4 Watt (50V AC/DC Max.) HRP (3-wire) Slotted Disc, 6-15 VDC Both units require power from an external source.

Dimensions and Net Weights

Meter		Weight				
Sino	A	B	C	D	E	(the.)
1 1/2" Ovel	10	73/4	2 7/16	7 3/8	5 5/8	19 1/2
1 1/2" Raund	10	7 3/4	2 7/16	7 3/8	5 1/16	20
2" Ovel	10	734	2 7/16	7 3/8	6 1/8	21 1/2
?" Remai	10	77/8	2 9/16	7 3/8	6 1/16	22
3"	12	93/8	3 13/14	7 3/8	71/2	33 3/8

ABB

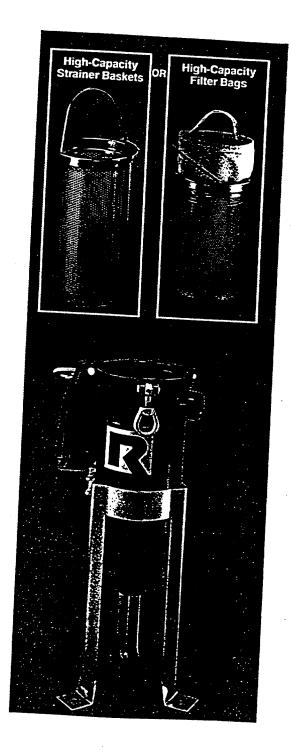
The company's policy is one of continuous product improvement and the right is reserved to modify the specifications contained herein without notice. These products have been manufactured with current technology in accordance with applicable AWWA Standards.

Kent Meters, Inc.
P.O. Box 1852
Ocala, Florida 34478-1852
Local Florida 904-732-4670
Putside Florida TOLL FREE 800-874-0890
Inside Florida TOLL FREE 800-356-6829
FAX: 904-368-1950

Kent Meters, Inc. 1200 Aerowood Drive-#35 Mississauga, Ontario Canada L4W 2S7 Tel: 905-238-9622 FAX: 905-238-5840 An ABB Kent Meter Division Co. Distributed by: NDT3-82-21509-652V

Strainers or Bag Filters: Your Choice!

Rosedale strainer/filter housings are made in many sizes, and all can serve as basket strainers (for particle retention down to 74 micron size) or as bag filters (for particle retention down to 1 micron size). In all cases, covers are easily removed, without tools, and the basket or bag is easily cleaned or replaced.


FEATURES

- · Large-area, heavy-duty baskets
- Low pressure drops
- Housings are permanently piped
- · Covers are O-ring sealed
- Carbon steel, or stainless steel (304 or 316) housings
- All housings are electropolished to resist adhesion of dirt and scale
- Adjustable-height legs, standard on Models 6 and 8; optional extra on Model 4
- Easy to clean
- ASME code stamp available
- Liquid displacers for easier servicing
- Special options include filter bag holddown devices, sanitary construction, different outlet connections, higher pressure ratings, extra-length legs, heat jacketing, and adapters for holding filter cartridges.
- Multiple-basket and duplex units are available

Dual Stage Straining/ Filtering

All Rosedale Model 8 housings can be supplied with a second, inner basket which is supported on the top flange of the regular basket. Both baskets can be strainers (with or without wire mesh linings) or both can be baskets for filter bags. They can also be mixed; one a strainer basket, the other a filter bag basket. Dual-stage action will increase strainer or filter life and reduce servicing needs.

The following model descriptions and flow tables can be used to aid in selection, and make comparisons between the various styles.

Model 4 — For flow rates to 50 gpm*

- Pipe sizes 3/4 thru 2-inch, NPT or flanged
- Two basket depths: 6 or 12 inches (nominal)
- Three pressure ratings: 200 psi (with clamp cover) and 300 or 500 psi (with eyenut cover)
- ASME code stamp available

BASKET DATA

Depth Nominal (inches)	Diameter (inches)	Surface Area (sq. ft.)	Volumn (cu. in.)	Bag Size No.
6	3.9	0.5	65	
12	3.9 ·	1.0	130	3 ₄

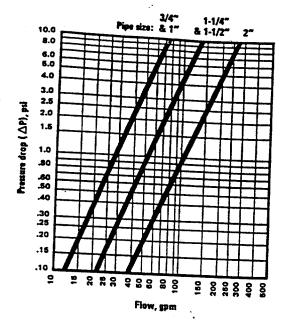
Model 6 - For flow rates to 100 gpm*

- Can provide 3.4 square feet of basket or bag surface area without need for ASME code construction
- · Can be fitted with cartridge filter element adapter
- Pipe sizes 3/4 thru 4-inch, NPT or flanged
- Three basket depths: 12, 18 or 30 inches (nominal)
- Four pressure ratings: 150, 210, 300, or 500 psi
- ASME code stamp available

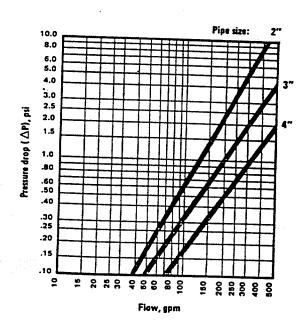
BASKET DATA

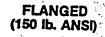
Diameter (inches)	Surface Area (sq. ft.)	Volumn (cu. in.)	Bag Size No.
- 5	1.3	225	
5	-		/
Ě.			8
<u> </u>	3.4	630	9
		Diameter Area (inches) (sq. ft.) 5 1.3	Diameter (inches) (sq. ft.) (cu. in.) 5 1.3 235 5 2.0 350

Model 8 — For flow rates to 220 gpm*

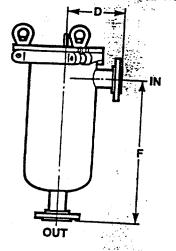

- · Can be fitted with an adapter to hold cartridge filter elements
- Pipe sizes 3/4 thru 6-inch, NPT or flanged
- Two basket depths: 15 or 30 inches (nominal)
- · Four pressure ratings: 150, 210, 300, or 500 psi
- ASME code stamp available

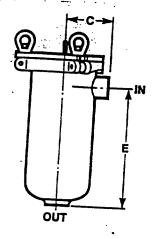

BASKET DATA

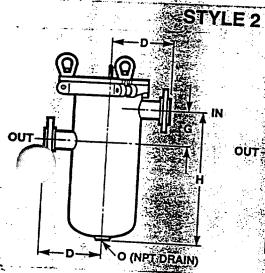

2

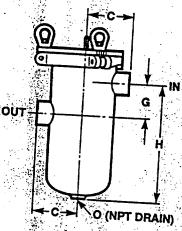

Depth Nominal (inches)	Diameter (inches)	Surface Area (sq. ft.)	Volumn (cu. in.)	Bag Size No.	
15	6.7	2.3	500	110.	
30	6.7	4.4	1000	1 2	

^{*} Based on housing only. Fluid viscosity, filter bag used, and expected dirt loading should be considered when sizing a filter.

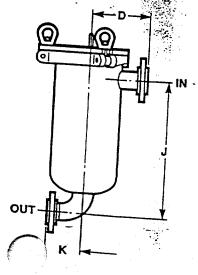


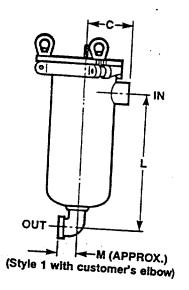


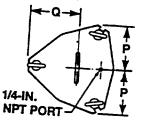

THREADED (NPT)

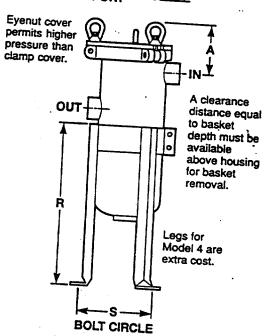

STYLE 1

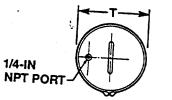
Charles SLATES

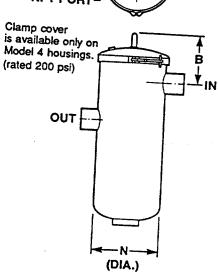


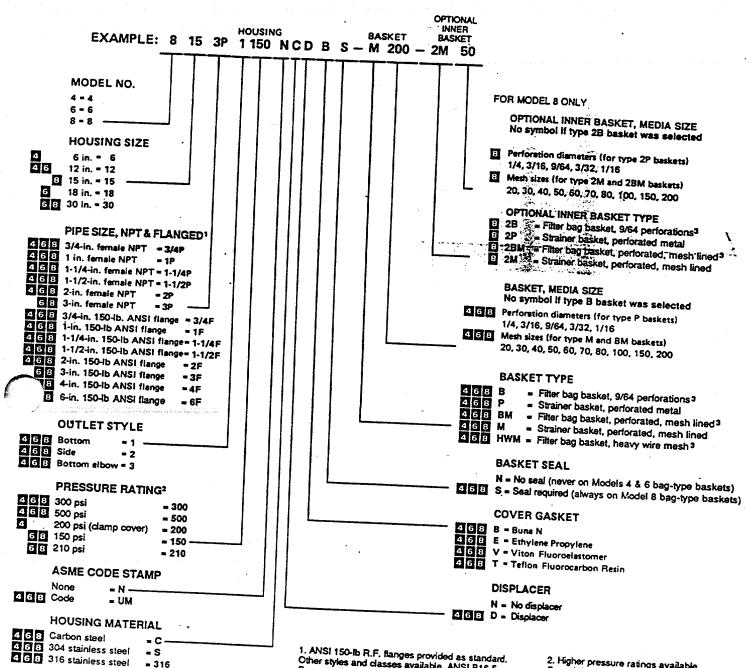





STYLE 3




EYENUT COVER


CLAMP COVER

Build an ordering code as shown in the example. Each option is available only on the model sizes indicated in the colored blocks preceding its description.

Key to blocks: = Model 4 = Model 6 = Model 8

Other styles and classes available. ANSI B16.5 Pressure-Temperature rating tables determine flange class for ASME code housings. Consult factory.

Higher pressure ratings available. Consult lactory. 3. Filter bags are specified separately. See Rosedale Filter Bag Catalog FB.

ROSEDALE PRODUCTS, INC.

Box 1085, Ann Arbor, MI 48106

Tel: 313-665-8201 Fax: 313-665-2214

Catalog 468.5

Litho in USA

CLOSE COUPLED CENTRIFUGAL MOTOR **PUMPS**

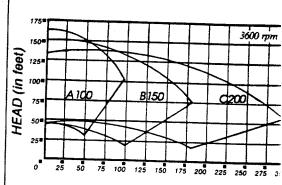
Flows to 300 GPM Heads to 150 Feet

MATERIALS

All iron (AI) Bronze Fittéd (BF) All Bronze (AB) 316 Stainless Steel (SS)

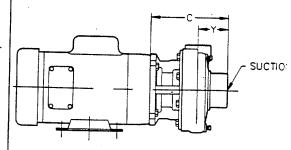
APPLICATIONS

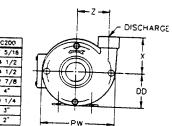
- INDUSTRY Deionized water, water & waste treatment, various chemicals, hot solvents, caustics, some acids.
- O.E.M. Washers, filters, chillers, cooling towers, scrubbers, plating equipment.
- AGRICULTURE Acid fertilizers and other agricultural chemicals.


FEATURES

- SIZES: A100 1" × 1½" × 6" B150 1½" × 2" × 6" C200 - 2" × 3" × 6"
- Compact, close-coupled design.
 Standard NEMA JM motors: 1½HP thru 10HP (3600 RPM) 1HP thru 5HP (1800 RPM)
- NEMA 'C' Face motors also available using stub shaft in place of shaft sleeve.
- Drip proof, Totally Enclosed, Fan-Cooled and Explosion-Proof motors available from stock for most models.
- Castings are heavy duty sand castings.
- Enclosed impellers for superior efficiency.
- Mechanical seal: 1½" T.21 carbon vs ceramic standard. Standard elastomer is Buna for Iron & Bronze, Viton for SS pumps.
- T.9 Teflon, double seals, silicon carbide faces are among the many seal options available from stock.
- Replaceable shaft sleeve or optional stub shaft.
- Back pull-out design for easy serviceability.
- Special impeller lockscrew and Teflon gasket seals motor shaft from liquid.

ALSO AVAILABLE


- **FRAME MOUNTED**
- **VERTICAL**
- AIR MOTOR DRIVE



FLOW (USGPM)

Curve for reference only. See engineering curves for final selection

PUMP	A100		C200		
_		8150			
С	6 9/16	7 1/16 *	7 5/16		
00	3 13/16	4 1/16	4 1/2		
x	4.	4 1/4	4 1/2		
Υ	2 1/2	2 3/4	2 7/8		
Z	3 1/2	3 5/8	4"		
PW	8 1/16	8 1/2	9 1/4		
SUC.	1 1/2	2"	3"		
DIS.	1"	1 1/2	2*		

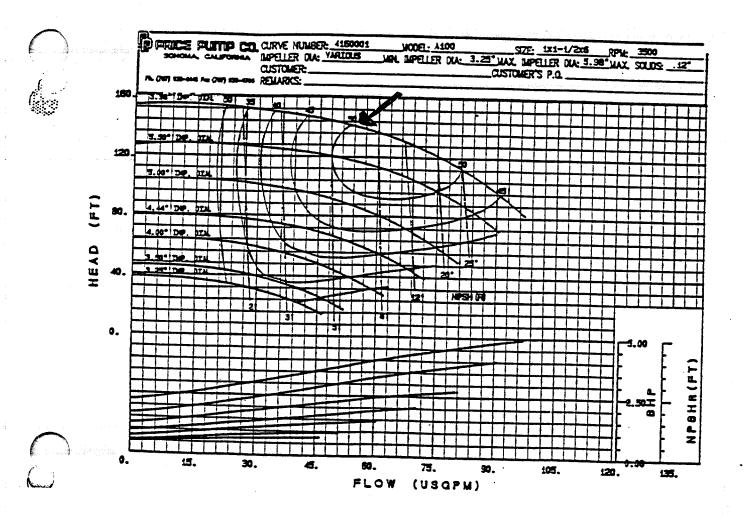
A100

B150

C200

DISCHARGE SUCTION 1" NPT 11/2" NPT 11/2" NPT 2" NPT 2" NPT 3" NPT

Form #212

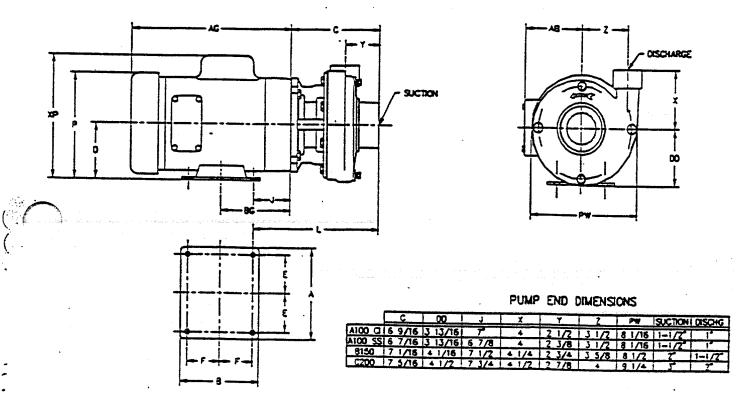

PRICE

#1 Pump Way, P.O. Box Q

Sonoma, CA 95476

FAX: (707) 938-0764

(707) 938-8441



PRICE PUMP CO.

ABC OUTLINE DRAWING Effective: January 1, 1993

MOTOR END DIMENSIONS

	AG	AB.	BG			1.000			10 00 00	يمدر ديرين بالاست	<u> </u>	مراسف المشاهر	Salar Albania	
A100-150		- 79				J (REF)	7 DIA	<u> </u>		<u> </u>	0	1 X2	2	
	11 1/4	5 1/4	4 7/8			i		1			T		1	
A100-200			5 3/8	2 3/4	2.0	2 7/8	11/32	5 15/16	30	6 1/2	3 1/2	9 1/8	5 7/8	
A100-300	12 1/8		1 2 3/8 1		2 1/2 2			10,10	"	.,.	1 ./-	1 3 1/4	0 //0	
A100-500	13 13/18	5 7/8	1 5 1/4	3 3/4	2 3/4	3 1/2	13/32	5 1/2	10 5/8	3 1/2	4 1/2	10 11/16	8 7/18	
9150-150			4 7/8		2					<u> </u>	17.	10 11710	9 //10	
3150-200	11 1/4	5 1/4	5 3/8 2 3/4	2 3/4	2 3/4	2 1/2 2 7/8	11/32	5 15/16	9 1/4 6	6 1/2	3 1/2	9 1/8		
3150-300	1 12 1/8	•			2 1/2					0 1/2			5 7/8	
B150-500	13 13/18		4 - 4		/:			45.455						
3150-750	15 5/16		5 1/4	3 3/4	2 3/4 3 1/2	13/32	5 1/2	9 7/8	8 1/2	+ 1/2	10 11/18	8 7/16		
CZ00-150		5 1/4	4 7/8 1		7									
C200-200	11 1/4			2 3/4		2 7/8	11/32	5 15/16	7/6			ا ـ ـ ـ ا		
C200-300	12 1/8		5 3/8	1 /	2 1/2 2 1/6	11/32	3 13/10	10 //8	6 1/2	3 1/2	9 1/8	6 7/8		
CZ00-500	13 13/16							-						
	15 5/16	5 7/8	5 1/4	3 3/4	2 3/4	3 1/2	13/32	6 1/2	11 1/2	8 1/2	4 1/2	10 11/18	. 7.04	
	15 9/16	7 3/8	7.1/4	4 1/4	2 3/4			/-		- '/-	- 1/4			
		. 3, 0	173	- 1/- 1	4 3/4	4 1/2 1	13/32	0 1	12 1/2 1	9 1/2 1	5 1/4	M/A	10 1/16	

. DIMENSION "APPLES TO SINGLE PHASE MOTORS ONLY. A